首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical genetic variation at a leucine aminopeptidase (LAP) locus is related to salinity variation in several marine bivalve molluscs. This paper details an investigation of the Long Island Sound model of LAP selection (LAP genotype-dependent mortality occurring among newly settled Mytilus edulis mussels) carried out in 1997 among three M. galloprovincialis mussel populations along the salinity gradient of Wellington Harbour, New Zealand. Significant LAP genotypic heterogeneity was observed at the LAP locus between small (<25 mm shell length) and large (>25 mm shell length) M. galloprovincialis from Petone and Eastbourne (the two sites experiencing the greatest salinity variation), whereas genotypic heterogeneity was not significantly different between small and large mussels from Seatoun (the site experiencing the least salinity variation). The Lap 3 allele decreased in frequency and the Lap 4 allele increased in frequency at Petone and Eastbourne, whereas the Lap 3 and Lap 4 allele frequencies remained effectively constant at Seatoun. Both these findings are consistent with the Long Island Sound model of selection. At all three locations, the Lap 3,3 genotype decreased in frequency from small to large mussels, whereas the Lap 3,4 genotype increased in frequency from small to large mussels. All other LAP genotypes occurred at low frequencies (<0.10) at all three locations and showed no evidence of frequency change from small to large-size mussels nor evidence of clinal change among the three locations. These genotype frequency data possibly indicate that the Lap 3,3 genotype is at a selective disadvantage compared to the Lap 3,4 genotype at all three locations, and that this selective disadvantage is related to the extent of salinity variation which exists at each location. Further investigation is required before it can be determined if the Long Island Sound model of selection best describes the size-dependent and location-specific changes in LAP allele and genotype frequencies along this salinity gradient. Comparison of the population genetic structure at the LAP locus in 1995 and in 1997 revealed a profound change from heterozygote excesses to heterozygote deficiencies for all three M. galloprovincialis populations. The reason for the change is unknown, but the change indicates that population genetic structure at the LAP locus is highly variable in time, but consistent in space, among these M.␣galloprovincialis populations. Received: 5 February 1998 / Accepted: 27 May 1998  相似文献   

2.
Blue mussels representing two nominal species (Mytilus trossulus Gould, 1850 and Mytilus galloprovincialis Lamarck, 1819 were collected from 28 intertidal locations along the Pacific coast of the USA in 1990–1991 (total N=1255) and examined for variation at 15 allozyme loci. Twelve samples, mostly from a region of suspected hybridization, were analyzed for variation in seven shell characters. Principal-components analysis of allozyme data revealed three groups based on first principal-component scores, which were identified as M. trossulus, M. galloprovincialis, and hybrids. Canonical discriminant analysis of shell characters was less successful in separating mussels into discrete groups. Each location was characterized for four environmental variables: (1) temperature, (2) salinity, (3) tidal height and (4) degree of exposure to wave action, which were then used as independent variables in a series of multiple-regression analyses, with the proportions of the two species as dependent variables. Temperature and salinity had significant (P<0.05) effects on the macrogeographic distribution of the two species, whereas the effects of height in the tidal zone and degree of wave exposure were not statistically significant. Salinity was found to have a greater influence than temperature on the microgeographic distribution of the two species. M. trossulus was more abundant at locations with lower temperatures and greater salinity variation than M. galloprovincialis. The two species appear to be ecologically distinct, and their genetic integrity is at least partly the result of environmental heterogeneity.  相似文献   

3.
Mussel samples were collected at 4 to 6 wk intervals throughout 1987 from two hybridMytilus edulis/M. galloprovincialis populations, at Croyde Bay and Whitsand Bay, in southwest England. These were analyzed at two polymorphic loci which are diagnostic for allozyme differences which typifyM. edulis andM. galloprovincialis. Dry mantle weight as a function of shell length was determined for all individuals of each sample. Size-frequency data for the two populations was obtained in September 1987 and March 1988. For all genotypes at both sites, fecundity was a function of shell length, and in both populations the frequency ofM. galloprovincialis alleles was positively correlated with shell length. At both sites, allozyme genotype explained a significant amount of variation in mantle weight either when assessed as a main effect or when assessed as an interaction with shell length or time of collection. At Croyde,M. galloprovincialis mussels had greater estimated fecundity per unit length than theM. edulis mussels. Differences in the timing of spawning activity between theM. edulis and theM. galloprovincialis mussels were inferred, and these differences might act to reduce the amount of interbreeding at Croyde. At Whitsand, a reduced level of variability in the timing of spawning activity and fecundity between the genotypes was observed and explained by a higher degree of genetic mixing. Because theM. galloprovincialis mussels had (1) a greater estimated fecundity at any length, and (2) a greater mean length than theM. edulis mussels, the mean genotypic annual fecundity perM. galloprovincialis mussel was 2.8 times greater than an individualM. edulis mussel at Croyde, and 2.2 times greater than an individualM. edulis mussel at Whitsand. This evidence thatM. galloprovincialis mussels have an advantage in fecundity, and thus perhaps in fertility, taken together with the evidence thatM. galloprovincialis also has a higher viability, indicates directional selection in favour of theM. galloprovincialis phenotype. Because of the observed temporal stability of the population it seems likely that this selection is counterbalanced by a massive imigration ofM. edulis spat from neighbouring populations.  相似文献   

4.
The ability of a mussel to withstand wave-generated hydrodynamic stress depends mainly on its byssal attachment strength. This study investigated causes and consequences of different attachment strengths of the two dominant mussels species on the South African south coast, the invasive Mytilus galloprovincialis and the indigenous Perna perna, which dominate the upper and the lower areas of the lower balanoid zone, respectively and co-exist in the middle area. Attachment strength of P. perna was significantly higher than that of M. galloprovincialis. Likewise solitary mussels were more strongly attached than mussels living within mussel beds (bed mussels), and in both cases this can be explained by more and thicker byssal threads. Having a wider shell, M. galloprovincialis is also subjected to higher hydrodynamic loads than P. perna. Attachment strength of both species increased from higher to lower shore, in response to a gradient of stronger wave action. The morphological features of the invasive species and its higher mortality rates during winter storms help to explain the exclusion of M. galloprovincialis from the low shore. The results are discussed in the context of the evolutionary strategy of the alien mussel, which directs most of its energy to fast growth and high reproductive output, apparently at the cost of reduced attachment strength. This raises the prediction that its invasive impact will be more pronounced at sites subject to strong but not extreme wave action.  相似文献   

5.
Loglinear analysis of electrophoretic data from two hybrid Mytilus edulis x galloprovincialis populations in southwest England revealed non-significant associations between genotypes at four allozyme loci, each of which is partially diagnostic for differences between the two taxa. Significant non-random genotypic associations within the context of the non-significant model involved all four assayed loci equally, consistent with their occurrence in a relatively tight linkage group. Multivariate analyses were used to examine electrophoretic variation from the two hybrid populations, and morphometric variation in the hybrid populations and in four allopatric (two M. edulis and two M. galloprovincialis) populations from western Europe While the number of hybrid mussels is high at both sites (22% at Croyde, 53% at Whitsand) the two taxa have largely maintained the genetic differences which exist between them in allopatry. However, morphological differences between the taxa have been eroded for mussels within the hybrid zone, whereas these differences are quite pronounced for mussels from allopatric populations. It is proposed that each taxon within the genus maintains its genetic identity, despite high dispersal potential, widespread hybridization, and high levels of introgression, as a result of adaptation to different environments. The worlwide occurrence of all four Mytilus hybrid zones at ecotones between recognized biogeographical provinces which are characterized by differences in temperature and salinity is consistent with such an interpretation.  相似文献   

6.
N. H. Marcus 《Marine Biology》1990,104(3):413-418
In Ireland, mussels on exposed rocky shores constitute an interbreeding mixture of two forms of mussels,Mytilus edulis L. and the Mediterranean musselM. galloprovincialis Lmk. This paper presents an in-depth analysis, carried out between October 1984 and December 1986, of genetic variability at two partially diagnostic loci,Odh andEst-D, in two exposed-shore populations ofMytilus spp. in the west of Ireland. Significant differences at theOdh locus were observed in the genetic composition of adult mussels from different tidal levels. These differences were repeatable whether one was analysing replicate samples at a single point in time, samples collected at different points in time, i.e., in different years, or samples collected from different shores. Mussels recruiting to artificial substrates set out for a period of one month at different tidal levels at one of these sites were also observed to be genetically different; mussels higher up the shore exhibited higher frequencies of those alleles characteristically at high frequency inM. galloprovincialis for both theOdh andEst-D loci. Hence, the genetic differences observed in adult mussels are much more exaggerated in juveniles and are already apparent within the first month of benthic life. Possible reasons for the observed microgeographic differentiation are discussed. It is concluded that the observed genetic differences between mussels at different tidal levels arise either in the pelagic/attachment stage or very shortly after settlement.  相似文献   

7.
Distribution, abundance, and resistance adaptations to higher temperature and desiccation of three species of intertidal mussels (Mytilus edulis aoteanus, Perna canaliculus and Aulacomya maoriana) were studied in New Zealand. M. edulis aoteanus generally was more abundant upshore, with P. canaliculus dominating downshore. M. edulis aoteanus was more common than P. canaliculus on the outside of mixed-species clumps. Abundance of A. maoriana was variable, with individuals favouring damp habitats such as inside mussel clumps. In moving air at 75% relative humidity and at 20°C or 30°C, median lethal levels of water loss were similar for P. canaliculus and M. edulis aoteanus but lower for A. maoriana. Rates of desiccation varied inversely with size and were higher for P. canaliculus, due mainly to valve gaping with resultant loss of water from the mantle cavity. M. edulis aoteanus was more tolerant of higher water temperatures than were the other species. Success in colonizing upshore or more aerially exposed habitats seems to be related to ability of small mussels to tolerate desiccation, especially during hot, windy weather.  相似文献   

8.
Mitochondrial DNA (mtDNA) and allozyme variation were analysed in samples of mussels collected in 1984 and 1985 from four localities in South West England and one locality in South Wales, a region of Britain where the common mussel (Mytilus edulis) occurs sympatrically and hybridises with the Mediterranean mussel (M. galloprovincialis). Significant differences in mtDNA genotype frequencies for three restriction enzymes (BstEII, XbaI, and EcoRI) were observed between mussels from M. galloprovincialis populations (Padstow and Bude) and those from an M. edulis population (Swansea). Some mtDNA genotypes at high-frequency in M. galloprovincialis were not observed in M. edulis, although there was no indication that mtDNA variation provides greater overall diagnostic power than allozyme variation in distinguishing between the two forms of mussel. Construction of a phylogenetic tree of multiple mtDNA genotypes revealed small mutational distances between the genotypes characterising M. edulis and M. galloprovincialis. The results were consistent with predominant mtDNA flow from M. edulis to M. galloprovincialis. This can be explained by the dispersal of larvae to South West England from M. edulis regions to the north and east, but little dispersal in the opposite directions. Samples from two hybrid populations (Whitsand and Croyde) were analysed. mtDNA genotype frequencies at Croyde were in line with predictions made on the basis of two partially diagnostic allozyme loci (Est-D and Odh), mtDNA frequencies at Whitsand were not. Frequencies of some mtDNA genotypes at Whitsand were characteristic of M. edulis, others of M. galloprovincialis. Differential selective mortality or flow of different mtDNA genotypes and allozyme variation are proposed as possible causes of these results.  相似文献   

9.
The blue mussels Mytilus edulis L. and M. galloprovincialis Lmk. hybridize in western Europe. Within hybrid populations nuclear alleles specific to M. galloprovincialis increase in frequency with age and size. This relationship changes with tidal height; alleles from M. galloprovincialis occur more frequently high in the intertidal zone, while M. edulis alleles predominate in the low intertidal zone. We tested the hypotheses that larvae with M. galloprovincialis alleles tend to settle higher in the intertidal zone, or that mussels redistribute themselves with respect to tidal height after initial larval settlement. We sampled recently metamorphosed mussels every 2 weeks in a hybrid mussel population at Whitsand Bay in southwest England throughout the summer of 1996. We observed four cohorts of newly settled mussels. There was no evidence of differential settlement of mussels with different genotypes in connection with tidal height, or into shaded versus unshaded microsites. Therefore, we rejected the preferential settlement hypothesis. There was substantial movement of juvenile mussels in the first 4 weeks following initial settlement, but this “secondary settlement” did not result in genetic differentiation with respect to tidal height. Further, significant differences in allele frequencies were found between primary and secondary spat. This allele frequency change was in the opposite direction of that seen in the adult population, suggesting newly settled larvae may be experiencing different selective pressures than adults. We propose that the genetic structure of hybrid mussel populations with respect to tidal height is the consequence of differences in selection intensity. Received: 30 April 1999 / Accepted: 5 May 2000  相似文献   

10.
Previous studies of a hybrid zone between the mussels Mytilus edulis Linnaeus and M. galloprovincialis Lamarck have not resolved the relative importance of the genetic composition of settling larval cohorts versus post-settlement selection in determining the distribution of the parental species and their hybrids. In the present study, recently settled mussels (spat) were collected from 20 sites in southwest England throughout the summer and fall (May–October) in 1998 and 1999. This study investigated the spatio-temporal patterns of settlement and genetics of mussel spat by genetically identifying M. edulis, M. galloprovincialis and their hybrids using the diagnostic PCR marker Glu-5. Settlement was observed earlier in populations of M. edulis than in populations of M. galloprovincialis. Settlement occurred in hybrid populations at times intermediate to and overlapping with both of the parental populations. Temporal genetic variation within years was rare at most sites, while there was some variation between the two years. Spatial genetic variation, however, was common among spat settling within the hybrid populations and matched that observed in small, sub-adults at the same sites. No consistent directional changes in allele frequency were observed over the course of several weeks after settlement. These data suggest that the observed spatial variation in the adult populations is the result of spatial variation in settling larval cohorts and not of either temporal genetic variation or of selection soon after settlement.Communicated by J.P. Grassle, New Brunswick  相似文献   

11.
Heterozygosity and growth in transplanted mussels   总被引:2,自引:0,他引:2  
Growth comparisons were made involving mussels (Mytilus spp.) collected from five different localities in Britain in 1980–1981. Two of the localities, Mumbles, South Wales, and Bude, Southwest England, have pure populations of M. edulis and M. galloprovincialis, respectively. The other three, Whitsand Bay, Southwest England, Croyde Bay, Southwest England and Robin Hood's Bay, Northeast England, have hybrid populations with both M. edulis and M. galloprovincialis ancestry. To make growth comparisons, mussels from different populations were mixed in oyster nets and transplanted to three different localities. After periods of transplantation varying between several months and one year, growth was assessed by measuring increase in shell length or dry body weight. Starch-gel electrophoresis was used to assay variation in the transplanted mussels at three allozyme loci partially diagnostic for M. edulis and M. galloprovincialis. The results provide evidence of small growth differences between populations and between allozyme genotypes within populations. These differences accounted for no more than a few percent of the total variation in growth between mussels. Statistically significant results were obtained, but were frequently found not to be reproducible. There is no clear evidence of a growth difference between M. edulis and M. galloprovincialis. Allozyme heterozygotes appear to have growth rates intermediate between allozyme homozygotes; this study thus fails to provide evidence for overdominance with respect to growth rate.  相似文献   

12.
Mussel samples were collected from a hybrid mussel (Mytilus galloprovincialis and M. edulis) Population at Croyde, southwest England, in January, March and May 1990. The strength of attachment of each mussel to the substrate was measured with a spring balance. A number of diagnostic characters were also recorded. These are shell lengh, width and height, mantle colour and genotype at two allozyme loci, esterase-D and octopine dehydrogenase. Multiple-regression analysis was used to assess the effect of the diagnostic characters on strength of attachment as dependent variable. Mussels possessing the relatively high shells and darker mantle colouration characteristic of M. galloprovincialis had higher values, on average, for strength of attachment than mussels resembling M. edulis. Phenotypically intermediate mussels had intermediate values for strength of attachment. The results suggest an adaptive difference which can account for reports of differential mortality acting in favour of M. galloprovincialiis.  相似文献   

13.
The adhesive protein allele of mussels collected at 13 points in Japan from Hokkaido to Kyushu was analyzed by the polymerase chain reaction using a set of primers which amplifies a part of the nonrepetitive region of the adhesive protein gene. While most mussels exhibited a 126 bp fragment, characteristic of the pure Mytilus galloprovincialis, 55 of 64 mussels sampled at Hiura and 1 of 14 mussels at Hakodate Port exhibited 168 and 126 bp fragments. Sequence analysis of the two fragments indicated that the 168 and 126 bp fragments are almost identical to previously reported sequences in M. trossulus and M. galloprovincialis, respectively. Since the frequency of heterozygous individuals in Hiura is very high, it is unlikely that they are simple hybrids. However, it is evident that mixing of genes occurred between the two species off Hokkaido. Received: 6 September 1996 / Accepted: 9 October 1996  相似文献   

14.
Electrophoretic analysis of loci controlling a variety of enzymes has been applied to samples of the Padstow mussel and typical Mytilus edulis L. living strictly sympatrically at Rock, Cornwall, England, in order to resolve the disputed status of the Padstow mussel. Small samples indicated similar monomorphic states at the GPDH, TO, MDH-2 loci and weak polymorphism at the 6 PGD locus in both types of mussel. The MDH-1 locus may be weakly polymorphic in the Padstow mussel and monomorphic in M. edulis. Large samples assayed for AP, LAP, PGM, and PHI produced data showing very large and highly significant differences in allele frequencies at three of these loci between the two groups of mussels separated on anatomical characters. At the LAP locus, significant deficiencies of heterozygotes were observed in both groups of mussels. A small percentage of mussels from Rock are difficult to assign with certainty to one or other group on anatomical and morphological criteria, but the genetic evidence indicates that most, if not all, such specimens are M. edulis. These genetic differences make it highly improbable that any significant degree of genetic exchange occurs between the two groups in nature and, taken together with the evidence of genetic resemblance of the Padstow mussel to M. galloprovincialis from Venice and that of Rock M. edulis to M. edulis, from the Gower peninsula of Wales we conclude that the Padstow mussel is indeed M. galloprovincialis.  相似文献   

15.
Along the west coast of North America, the invasive mussel Mytilus galloprovincialis and a native congener M. trossulus overlap in range and compete for habitat in an extensive hybrid zone along central California. The two species have been shown to exhibit differential abiotic tolerances in laboratory studies, yet little is known about how such tolerances affect spatial and temporal patterns of geographic distribution, particularly in areas of competition. We examined distributions of the two congeners and their hybrids in neighboring intertidal and subtidal habitats in Bodega Bay, CA over 2 years, and compared shell length and seasonal ubiquitin (Ub) conjugates to estimate protein turnover and physiological stress for the species at each site. The two species were spatially segregated, with M. galloprovincialis dominating the subtidal habitat, and M. trossulus constituting a majority of the intertidal mussel population. Hybrid individuals appeared in low numbers at both sites. For each habitat, there was no statistical difference between shell lengths of M. galloprovincialis and hybrids but M. trossulus mussels were statistically smaller than the other two. In regards to physiological performance, ubiquitin conjugate values showed different seasonal cycles for the two species, suggesting different periods of peak environmental stress. The highest levels of Ub-conjugated proteins were observed in winter for M. galloprovincialis and in summer for M. trossulus, consistent with the respective range edges for their distributions since Bodega Bay is near the northern range edge of the invader and the southern edge of the native species. These findings suggest that future assessments of Mytilus populations along the California coast may need to consider vertical distributions and seasonal cycles as part of monitoring and research activities.  相似文献   

16.
The ability of an invasive species to spread in a new locality depends on its interaction with the indigenous community and on variation in time and space in the environment. The Mediterranean mussel Mytilus galloprovincialis invaded the South African coast 30 years ago and it now competes and coexists with the indigenous mussel Perna perna. The two species show different tolerances to wave and sand stress, two of the main environmental factors affecting this intertidal community. P. perna is more resistant to hydrodynamic stress than M. galloprovincialis, while the invasive species is less vulnerable to sand action. Our results show that mortality rates of the two species over a period of 6 months had different timing. The indigenous species had higher mortality than M. galloprovincialis during periods of high sand accumulation in mussel beds, while the pattern reversed during winter, when wave action was high. A negative correlation between sand accumulation and attachment strength of the two mussels showed that sand not only affects mussel mortality through scouring and burial, but also weakens their attachment strength, subjecting them to a higher risk of dislodgement. Here we underline the importance of variations in time and space of environmental stress in regulating the interaction between invasive and indigenous species, and how these variations can create new competitive balances.  相似文献   

17.
Two species of blue mussel, Mytilus galloprovincialis and M. trossulus, co-occur and hybridize along the Pacific coast of North America. Using a set of polymerase chain-reaction (PCR)-based genetic markers which diagnostically identify these species, we show that they are sympatric from the Cape Mendocino region to the Monterey Peninsula in northern and central California, USA. Mussels with hybrid genotypes were detected in all populations sampled in the region of sympatry, and the frequency of hybrid genotypes in individual hybrid populations ranged from 13 to 44%. Significant frequencies of first-generation backcross genotypes were detected in two individual hybrid zone populations (Berkeley and Monterey Marina) and in the hybrid zone as a whole, indicating that the potential exists for introgression between M. galloprovincialis and M. trossulus. Despite this potential, we found no evidence of advanced introgression beyond first-generation backcrosses, suggesting that gene flow between M. galloprovincialis and M. trossulus has been quite limited. The frequency of mussels with M. trossulus and hybrid genotypes declined abruptly south of Monterey Peninsula, while the frequency of mussels with M. galloprovincialis and hybrid genotypes declined precipitously north of Cape Mendocino. These abrupt genetic discontinuities indicate that this blue mussel hybrid zone is presently positioned between two prominent coastal features and there is little, if any, export of alleles from the hybrid zone into bordering parental populations. Received: 20 August 1997 / Accepted: 26 October 1998  相似文献   

18.
Marine communities are experiencing unprecedented rates of species homogenization due to the increasing success of invasive species, but little is known about the mechanisms that allow a species to invade and persist in a new habitat. In central California, native (Mytilus trossulus Gould 1850) and invasive (Mytilus galloprovincialis Lamarck 1819) blue mussels and their hybrids co-exist, providing an opportunity to analyze the mechanisms that determine the distributions of these taxa. Spatial and temporal variation in temperature and salinity and the relative frequencies of these mussel taxa were examined between 2000 and 2004 at four sites in San Francisco Bay and four in Monterey Bay, which were chosen for their different positions along inferred estuarine/oceanic gradients in the hybrid zone. Mussels were genetically identified as the parent species or hybrids by amplifying regions of two species-specific loci: the adhesive byssal thread protein (Glu-5′) and the internal transcribed spacer region of ribosomal DNA (ITS 1). The proportion of M. trossulus at the eight hybrid zone sites correlated negatively with average salinity (R 2=0.60) and positively with maximal temperature (R 2≥0.72), a somewhat unexpected result given what is known about the phylogeography of this species. The proportion of M. galloprovincialis showed the opposite pattern. The proportion of hybrids was correlated neither with habitat temperature nor salinity. Genotypes of mussel populations at an additional 13 sites from Coos Bay, Oregon (latitude 43.35°N) to Long Beach, California (latitude 33.72°N), sampled at various intervals between 2000 and 2004, were also determined. This survey confirmed previous reports that the hybrid zone lies between Monterey and the Cape Mendocino region (latitudes 36.63°N–40.5°N). Within Monterey and San Francisco Bays, however, the temporal comparisons (1990s vs. 2000s) revealed abrupt changes in the proportions of the two parent species and their hybrids on annual and decadal time scales. These changes indicate that the blue mussel populations are in a highly dynamic state. The survey also showed that, regardless of habitat, M. trossulus is consistently of smaller average size than either M. galloprovincialis or hybrids.
Caren E. BrabyEmail:
  相似文献   

19.
Four populations of the predatory gastropodNucella lapillus were sampled at sites around the South West Peninsula of England in 1986, and analysed for allozyme variation at 18 enzyme loci. Two of these loci, Gpd-1 andHk-1, exhibited sex-specific phenotypes. An absolute locus association was observed between two other loci,Mdh-1 andEst-3. This association was only found at one site (Prawle), and it is suggested that the presence of chromosomal polymorphisms could explain this finding. As a measure of overall similarity, Nei's genetic identity statistic,I, was calculated; the mean for all populations was 0.989, with values ranging from 0.981 to 0.997. Although similar on this gross level, considerable interpopulation variation was evident. Observed mean heterozygosity (per locus) ranged from 0.043 to 0.104 (mean 0.074). Populations differed also in the loci at which significant heterozygote deficits were seen (of the seven deficits recorded only those at thePep-1 locus were consistent across sites) and in the presence of rare alleles undetected elsewhere. The variation observed showed no correlation to shell morphology or geographical distance and confirmed the conclusion that species of the genusNucella show considerable disjunct variation.  相似文献   

20.
Many marine species, including mussels in the Mytilus edulis species group (i.e. M. edulis L., M. galloprovincialis Lamarck, and M. trossulus Gould), have an antitropical distribution pattern, with closely related taxa occurring in high latitudes of the northern and southern hemispheres but being absent from the tropics. We tested four hypotheses to explain the timing and route of transequatorial migration by species with antitropical distributions. These hypotheses yield different predictions for the phylogenetic relationship of southern hemisphere taxa relative to their northern counter-parts. The three Mytilus species were used to test these hypotheses since they exhibit a typical antitropical distribution and representative taxa occur in both the Pacific and Atlantic. Two types of mtDNA lineages were found among populations of mussels collected from the southern hemisphere between 1988 and 1996; over 90% of the mtDNA lineages formed a distinct subclade which, on average, had 1.4% divergence from haplotypes found exclusively in northern Atlantic populations of M. galloprovincialis. These data indicate that southern hemisphere mussels arose from a migration event from the northern hemisphere during the Pleistocene via an Atlantic route. The remainder of the southern hemisphere lineages (<10%) were very closely related to mtDNA haplotypes found in both M. edulis and M. galloprovincialis in the northern hemisphere, suggesting a second, more recent migration to the southern hemisphere. There was no evidence that southern hemisphere mussels arose from Pacific populations of mussels. Received: 8 December 1998 / Accepted: 8 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号