共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
通过实验研究了Fenton体系中羟基自由基的生成规律,考察了H2O2浓度、FeSO4浓度、pH值3个因素对羟基自由基生成规律的影响,这3个因素对羟基自由基的生成均有较大的影响;采用“生成率”实验确定最佳操作条件,分析了Fenton试剂降解中年期垃圾渗滤液COD的动力学过程,将其分为2个近一级反应,反应速率常数分别为-538.5mg/(L·h)和-30.3mg/(L·h)。 相似文献
3.
通过实验研究了Fenton体系中羟基自由基的生成规律,考察了H2O2浓度、FeSO4浓度、pH值3个因素对羟基自由基生成规律的影响,这3个因素对羟基自由基的生成均有较大的影响;采用"生成率"实验确定最佳操作条件,分析了Fenton试剂降解中年期垃圾渗滤液COD的动力学过程,将其分为2个近一级反应,反应速率常数分别为-538.5 mg/(L·h)和-30.3 mg/(L·h). 相似文献
4.
采用混凝-Fenton氧化法对经生化处理后的垃圾渗滤液进行了深度处理,确定了最佳的试验条件.结果表明,混凝剂聚合硫酸铁(PFS)的最佳投加量为20mL/L.通过正交试验和单因素试验,确定了Fenton反应最佳工艺条件: 初始pH值为3,H2O2加入量为3.0 mL/L,FeSO4·7H2O加入量为3.5 g/L,反应时间为120 min.生化处理后的垃圾渗滤液经混凝-Fenton氧化法深度处理后,CODCr由处理前的560 mg/L降至处理后的93 mg/L,去除率达83.4%,出水水质达到新修订的<生活垃圾填埋场污染控制标准>(GB 16889-2008)排放标准. 相似文献
5.
采用Fenton试剂氧化法处理某钢铁厂焦化废水,对影响Fenton试剂处理焦化废水效果的因素进行分析,包括H_2O_2投加量、n[Fe~(2+)]∶m[H_2O_2]、p H值、反应温度、反应时间等。结果表明,对于该焦化废水最佳反应条件为:H_2O_2投加量50 m L/L(即每升水样投加量为50 m L),n[Fe~(2+)]∶m[H_2O_2]=1∶10,p H=3,反应温度为30℃,反应时间30 min,废水COD去除率可达到70%~79%。该研究为高浓度难降解废水处理提供了数据支持。 相似文献
6.
太阳光下Fenton氧化-混凝法深度处理垃圾渗滤液试验研究 总被引:3,自引:0,他引:3
针对经生物处理后难以进一步生物降解的垃圾渗滤液,提出采用太阳光下Fenton氧化-混凝法进行深度处理.比较了直接混凝法、太阳光下Fenton氧化法及其联合处理技术对垃圾渗滤液COD_(Cr)的处理效果.结果表明,垃圾渗滤液进行直接混凝处理的效果不理想.COD_(Cr)的去除率仅为17.8%;太阳光可有效地催化Fenton试剂对垃圾渗滤液COD_(Cr)的去除效果,但要其COD_(Cr)低于国家二级排放标准则需消耗H_2O_2的浓度大于600 mmol/L.导致其处理成本较高;而采用太阳光下Fenton氧化-混凝联合处理技术.垃圾渗滤液低于国家二级排放标准只需投加H_2O_2的浓度为170 mmol/L,比单纯采用太阳光下Fenton 氧化法处理垃圾渗滤液可节约H_2O_2用量2.53倍以上. 相似文献
7.
8.
为比较Fenton、光Fenton,US-Fenton和US-光Fenton处理垃圾渗滤液的效果,研究了相关Fenton工艺对有机物去除率、UV-Vis光谱、GC-MS图谱的影响。结果表明:与相关Fenton工艺相比,US-光Fenton的TOC去除率最高,达到65.4%,同时,BOD5/COD从0.204上升到0.415,UV-Vis谱线下降幅度最大,E254、E280和E400的去除率也最大;依据GC-MS图谱,渗滤液中含有56种有机物,其中36种物质被US-光Fenton完全去除;最后提出了US-光Fenton降解垃圾渗滤液中污染物的可能反应途径。 相似文献
9.
10.
11.
12.
利用芬顿和光-芬顿工艺降解垃圾渗滤液纳滤浓缩液中的难降解有机物。起始pH值5.0及较低H_2O_2/Fe~(2+)投加量时,芬顿法的氧化-絮凝作用可以去除70%以上的COD。采用芬顿氧化-絮凝和光-芬顿组合工艺处理不同浓度纳滤浓缩液时,H_2O_2/Fe~(2+)投加量为35 m M/8 m M和90 m M/10 m M时均可实现90%的COD和TOC去除率;组合工艺出水COD为112~160 mg/L,BOD/COD为0.35~0.43。纳滤浓缩液中检出的13种多环芳烃经过组合工艺处理后的总去除率均约在90%。 相似文献
13.
垃圾渗滤液是一种高浓度有机废水,为了降低其有机质含量,通过Fenton试剂-活性白土联合吸附法,研究了在不同反应条件下垃圾渗滤液中TOC和NH+4-N的去除率。结果为:在pH=4.5,H2O2投加量为260 mmol/L,H2O2/Fe2+摩尔比为13,反应50 min,沉淀90 min时,Fenton氧化效率最高;在pH=3.5,吸附剂投加量为140 g/L,吸附时间为50 min,出水渗滤液的TOC值最小,去除率为82.85%。通过GC-MS分析发现,富含烷烃类有机物或者苯酚类有机物的废水,最好采取物理吸附,而不是化学吸附。经过氧化-吸附过程处理垃圾渗滤液,出水水质达到排放标准。 相似文献
14.
15.
16.
以钛酸四正丁酯为原料,采用水热法制备纳米TiO_2材料,经过高温煅烧后,对其降解垃圾渗滤液的催化活性进行测定,并用XRD,TEM和UV-Vis对其晶体结构进行表征。实验结果表明,水醇比、水热温度和酯加入量对TiO_2催化效率有显著的影响,当水醇比为1∶3、煅烧温度500℃、水热时间4 h、Ti(OC_4H_9)_4加入量为10 m L条件下制备的TiO_2粉末光催化活性最好,对垃圾渗滤液的降解在180 min时均可以达到73%,COD的去除率可达76.92%。 相似文献
17.