首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable polyester polyol was synthesized from oleochemical glycerol monostearate (GMS) and glutaric acid under a non-catalyzed and solvent-free polycondensation method. The chemical structure of GMS-derived polyester polyol (GPP) was elucidated by FTIR, 1H and 13C NMR, and molecular weight of GPP was characterized by GPC. The synthesized GPP with acid value of 3.03 mg KOH/g sample, hydroxyl value of 115.72 mg KOH/g sample and Mn of 1345 g/mol was incorporated with polyethylene glycol (PEG) and polycaprolactone diol (PCL diol) to produce a water-blown porous polyurethane system via one-shot foaming method. The polyurethanes were optimized by evaluating glycerol as a crosslinker, silicone surfactant and water blowing agent on tensile properties of polyurethanes. All polyurethanes underwent structural change, and crystalline hard segments of polyurethanes were shifted to higher temperature suggested that hard segments undergone re-ordering process during enzymatic treatment. In terms of biocompatibility, polyurethane scaffold produced by reacting 100% w/w of GPP with isophorone diisocyanate and additives showed the highest cells viability of 3T3 mouse fibroblast (94%, day 1), and MG63 human osteosarcoma (107%, day 1) and better cell adhesion as compared to reference polyurethane produced by only PEG and PCL diol (3T3 cell viability: 8%; MG63 cell viability: 2%). The current work demonstrated GPP synthesized from renewable and environmental friendly resources produced polyurethanes that allows improvement in physico-chemical, mechanical and biocompatibility properties. By blending with increasing content of GPP, the water-blown porous polyurethane scaffold has shown great potential as biomaterial for soft and hard tissue engineering.  相似文献   

2.
Chemical recycling of PET has been developed by various methods. Aminolysis is one of chemical recycling methods of PET has been developed recently. The obtained product using aminolysis, Bis (2-hydroxy ethylene) terephthalamide (BHETA), has the potential for further reactions to obtain useful products. There are few reports on usage of recycled BHETA from PET waste to synthesis of polyurethanes. On the other hand, various biodegradable polyurethanes have been synthesized using polycaprolactone diol. Therefore, caprolactone is a new potential in synthesis of biodegradable polyurethanes from PET waste. In this work, novel biodegradable polyurethanes have been synthesized using BHETA. In this order, at first polyols with different molecular weights have been synthesized through ring opening polymerization of caprolactone by BHETA, then urethane linkages were formed using HDI (Hexamethylene Diisocyanate) without chain extender. Chemical, thermal, mechanical and dynamic mechanical properties, biodegradability, morphology and UV resistance of synthesized polyurethanes have been investigated.  相似文献   

3.
In this study, polyethylene terephthalate (PET) waste from post-consumer soft-drink bottles and crude glycerol from the biodiesel industry were used for the preparation of polyols and polyurethane foams. PET waste was firstly depolymerized by the glycolysis of diethylene glycol. The glycolyzed PET oligomers were then reacted with crude glycerol at different weight ratios to produce polyols via a series of reactions, such as esterification, transesterification, condensation, and polycondensation. The polyols were characterized by titration, viscometry, gel permeation chromatography (GPC), and differential scanning calorimetry. Subsequently, polyurethane (PU) foams were made via the reaction between the produced polyols and polymeric methylene-4,4′-diphenyl diisocyanate and were characterized by mechanical testing, scanning electron microscopy, and thermogravimetric analysis. Polyols from crude glycerol and their PU foams were also prepared to compare properties with those of polyols and PU foams from PET and crude glycerol. The influence of aromatic segments existing in glycolyzed PET and glycerol content on the properties of the polyols and PU foams was investigated. It was found that aromatic segments of polyols from glycolyzed PET helped increase their molecular weights and improve thermal stability of PU foams, while high glycerol content in polyols increased the hydroxyl number of polyols and the density and compressive strength of PU foams.  相似文献   

4.
Degradation of Polyethylene and Nylon-66 by the Laccase-Mediator System   总被引:2,自引:0,他引:2  
We investigated whether the laccase-mediator system (LMS) with 1-hydroxybenzotriazole (HBT) as a mediator could degrade high-molecular-weight polyethylene and nylon-66 membranes. The LMS markedly reduced the elongation and tensile strength of these membranes. After 3 days of treatment with the LMS, the M w of polyethylene decreased from 242,000 to 28,300, and that of nylon-66 from 79,300 to 14,700. The LMS also decreased the polydispersity (M w/M n) of polyethylene and nylon-66. Furthermore, these reductions in elongation, tensile strength, and molecular weight were accompanied by morphological disintegration of the polyethylene and nylon-66 membranes. These results strongly suggest that the LMS with HBT can effectively degrade polyethylene and nylon-66.  相似文献   

5.
The development of synthetic biodegradable polymers using solvent free polymerization has a unique potential to be used as sustainable polymers in biomedical applications. The aim of this work was to synthesize and characterize a sustainable class of poly(lactic acid) (PLA) under different operating conditions via direct polycondensation of lactic acid (LA). Several parameters were tested including the absence of solvents and catalysts on the polymerization, in addition to polymerization temperature and time. Polymerization conditions were evaluated using response surface method (RSM) to optimize the impact of temperature, time, and catalyst. Results showed that molecular weight (Mw) of PLA increased with increasing polymerization time. Highest Mw of 28.4 kD with relatively a broad polydispersity 1.9 was achieved at polymerization temperature 170?°C at 24 h in the free solvent polymerization. This led to a relevant inherent viscosity of 0.37 dl/g. FTIR spectra exhibited a disappearance of the characteristic peak of the hydroxyl group in LA at 3482 cm?1 by increasing the intensity of carbonyl group. The 1H nuclear magnetic resonance (NMR) exhibited the main chain at 5.22 ppm and the signal of methyl proton at 1.61 ppm as well as a signal at 4.33 and 1.5 assigned to the methane proton next to the terminal hydroxyl group and carboxyl group respectively. Meanwhile, the PLA synthesized with a catalyst [Sn(Oct)2] in a free solvent demonstrated comparatively high thermal transition properties of glass transition, melting, and crystallinity temperatures of 48, 106, and 158?°C, respectively. These results are of significant interest to further expand the use of PLA in biomedical applications.  相似文献   

6.
Cashew nut shell liquid (CNSL) is a natural aromatic oil consisting of a mixture of phenolic structures with a carboxyl group in ortho position and substituted in meta position with a hydrocarbon chain of 15 carbon atoms. The major component of CNSL is anacardic acid (90?%), which is easily decarboxylated to cardanol by distillation. The present work describes the synthesis of new biobased Mannich polyols for rigid polyurethane foams in two steps: synthesis of Mannich bases by reacting phenolic ring of cardanol with N-(2-hydroxyethyl)-1,3-oxazolidine followed by alkoxylation reactions. The polyols were characterized by wet methods (hydroxyl numbers, viscosity, acid value, density, water content, iodine value etc.), spectroscopic methods (FT-IR, 1H NMR and 13C NMR) and by Gel Permeation Chromatography. The Mannich polyols from cardanol are excellent replacements for petrochemical derived Mannich polyols based on nonyl phenol. Cardanol-based polyols were used successfully for the preparation of rigid polyurethane foams of good physical?Cmechanical and fireproofing properties.  相似文献   

7.
Ring-opening polymerization of cyclic esters (-caprolactone, -valerolactone, and l-lactide) onto liquefied biomass (LB) was conducted to obtain the polyester-type polyol and to regulate the characteristics of LB. IR and 1H-NMR spectra of the obtained polyol showed that the polymerization was successfully conducted in the presence of acid catalyst, which is used in liquefaction. The molecular weight (Mw), hydroxyl value, and viscosity were controllable by changing the reaction conditions. Polyester-type polyurethane foams with a wide range of properties were prepared from the obtained polyol with the appropriate combinations of foaming agents.  相似文献   

8.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

9.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

10.
Biobased polyurethanes from soybean oil–derived polyols and polymeric diphenylmethane diisocyanate (pMDI) are prepared and their thermomechanical properties are studied and evaluated. The cross-linked biobased polyurethanes being prepared from soy phosphate ester polyols with hydroxyl contents ranging from 122 to 145 mg KOH/g and pMDI within 5 min of reaction time at 150°C in absence of any catalyst show cross-linking densities ranging from 1.8 × 103 to 3.0 × 103 M/m3, whereas glass transition temperatures vary from approximately 69 to 82°C. The loss factor (tan ) curves show single peaks for all these biobased polyurethanes, thus indicating a single-phase system. The storage moduli (G) at 30°C range from 4 × 108 to 1.3 × 109 Pa. Upon postcure at 150°C, the thermomechanical properties can be optimized. Cross-link densities are improved significantly for hydroxyl content of 139 and 145 mg KOH/g at curing time of 24 h. Similarly, glass transition temperature (Tg) and storage moduli around and after Tg are increased. Meanwhile, tan intensities decrease as result of restricted chain mobility. Longer exposure time (24 h) induces thermal degradation, as evidenced by thermogravimetric analysis (TGA). The dynamic mechanical (DMA) analysis shows that postcure at 100°C for times exceeding 24 h also leads to improved properties. However, cross-linking densities are lower compared to postcure carried out at 150°C.  相似文献   

11.
Biobased polyols were synthesized from rapeseed oil (RO) with diethanolamine (DEA), triethanolamine (TEA) and glycerol (GL) at different molar ratios. The structures of the synthesized polyols were analyzed using FTIR-ATR spectroscopy. Polyurethane (PU) networks from RO/DEA polyols and polymeric MDI showed higher tensile strength, modulus and hardness, but their elongation at break decreased, compared to the case of the PU obtained from RO/TEA and RO/GL polyols. The tensile strength and modulus of PU networks increased with increasing PU cohesion energy density (CED) and decreasing molecular weight between crosslinks M c . From the thermogravimetric analysis and its derivative thermograms, at the first stage of destruction (below 5 % weight loss) in the air and inert atmosphere, the PU obtained from RO polyols were ranked in the following order: PU RO/GL > PU RO/TEA > PU RO/DEA, and their thermostability was higher than that of the PU based on propylene oxide.  相似文献   

12.
The relationship between the chemical structure of poly(alkylene glycol)s (PAGs) and their biodegradability was studied using a set of polymeric fluids that included poly(ethylene glycol), poly(propylene glycol) (PPG), random copolymers of ethylene oxide (EO) and propylene oxide (PO) differing in the EO/PO ratio as well as PAGs capped with ether or acyl moieties. The PAGs that were tested had an average molecular weight (MW) in the range of 350–3,600 Da and differed in their polymer backbones by either linear (diol type) or branched (triol type) molecules. The ultimate biodegradability of the PAGs was determined according to ISO 14593 (CO2 headspace test) with a non-pre-exposed (as in OECD 310 test) and pre-exposed (adapted) inoculum. PAGs with the structure of PPG and copolymers of EO/PO of diol or triol structures with average molecular weights lower than 1,000 Da can be considered as readily biodegradable. Their ultimate biodegradation exceeds the limit of 60 % (according to the criteria of the OECD 310 test). PAGs with a copolymer structure and MW values ranging between 1,000 and 3,600 Da are not readily biodegradable, but they can be considered as those of inherent ultimate biodegradability. The increased EO content in PAG structures and the acylation of the terminal hydroxyl groups with carboxylic acids favourably influenced their biodegradability. Capped PAGs containing terminal ether groups appeared to be resistant to biodegradation.  相似文献   

13.
Strips of Ca-I [polylactic acid (PLA) monolayer plastic films from Cargill Dow Polymers LLC, Minnetonka, MN] cut in the machine and nonmachine directions were irradiated with an electron beam using a CIRCLE III Linear Accelerator (MeV Industries S.A., Jouy-en-Josas, Cedex, France). The effects of 33-kGy irradiation on the physical properties of the Ca-I strips were studied. In addition, the effects of ultraviolet (UV) light (365-nm) illumination on the degradation of three PLA plastic films, Ch-I (PLA monolayer plastic films from Chronopol, Golden, CO), GII (PLA trilayer plastic films from Cargill Dow Polymers LLC), MN), and Ca-I (PLA monolayer plastic films from Cargill Dow Polymers LLC) were analyzed by a modified ASTM D5208-91 method. Results showed that irradiation had decreased the weight-average molecular weight (M w), stress at break, percentage of elongation, and strain energy of Ca-I by 35.5, 26.7, 32.3, and 44.8%, respectively (P < 0.01). The shelf life of the irradiated Ca-I strips at 5°C and <20 ± 5% RH was about 6 months. The degradation rate of Ch-I, GII, and Ca-I with no UV light treatment at 55°C and 10% RH was 2512, 5618, and 3785 M w/week, respectively. Under the UV light illumination (365 nm), the degradation rate of Ch-I, GII, and Ca-I, was 2982, 8722, and 7467 M w/week, respectively. Hence, the degradation rate of GII and Ca-I was increased 55 and 97% by UV light (P < 0.008), respectively. This trend was not observed in Ch-I because its starting M w (78,000 g/mol) was close to the tensile strength lost range (50,000 to 75,000 g/mol) of PLA films. To our knowledge, this is the first study to demonstrate that UV light does further enhance the degradation of PLA films.  相似文献   

14.
The influence of poly(dioxolane) (PDXL), a poly(ethylene oxide-alt-methylene oxide), as compatibilizer on poly(ɛ-caprolactone) (PCL)/tapioca starch (TS) blends was studied. In order to facilitate blending; PCL, PDXL and TS must be blended together directly; so that PDXL is partially adhered at the TS surface as shown by scanning electron microscopy. The molecular weight effect of PDXL on the PCL/TS blends showed that mechanical properties of PCL/TS/PDXL blends from low molecular weight (M n=10,000) and high molecular weight (M n=200,000) PDXL were rather dependent on TS content. The enzymatic degradability of PCL/TS/PDXL blends using α-amylase increased as the TS content increased but was independent on the dispersion of tapioca starch in the PCL matrix.  相似文献   

15.
Poly(acrylic acid)s (PAAs) with various functional groups, such as phenolic hydroxyl, amino, and aldehyde groups, in the side-chains were treated with manganese peroxidase (MnP) prepared from the culture of lignin-degrading white rot fungi. While no change in the Mw of PAA without a functional group was observed after a 24-h MnP treatment, the Mw␣of␣PAA␣with p-aminophenol as side-chains decreased from 90,000 to 59,000, and that with␣o-aminophenol from 70,000 to 26,000. MnP treatment also decreased the Mw of PAA with a p-aminoaniline or aldehyde group. Furthermore, the MnP treatment generated a significant depolymerization of the cross-linked PAA with p-aminophenol from an insoluble polymer to water soluble products. These results suggest that functional groups generating radicals can act as elemental devices and induce degradation of the PAA main chain.  相似文献   

16.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or copolymers with 10% [P(3HB-co-10%3HV)] and 20% [P(3HB-co-20%3HV)] 3-hydroxyvaleric acid was studied in small household compost heaps. Degradation was measured through loss of weight (surface erosion) and changes in molecular weight and mechanical strength. It was concluded, on the basis of weight loss and loss of mechanical properties, that P(3HB) and P(3HB-co-3HV) plastics were degraded in compost by the action of microorganisms. No decrease inM w could be detected during the degradation process. The P(3HB-co-20%3HV) copolymer was degraded much faster than the homopolymer and P(3HB-co-10%3HV). One hundred nine microbial strains capable of degrading the polymersin vitro were isolated from the samples used in the biodegradation studies, as well as from two other composts, and identified. They consisted of 61 Gram-negative bacteria (e.g.,Acidovorax facilis), 10 Gram-positive bacteria (mainlyBacillus megaterium), 35Streptomyces strains, and 3 molds.  相似文献   

17.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   

18.
Novel renewable polyols based on limonene were synthesized using thiol-ene “click” chemistry. These limonene based polyols were structurally characterized using wet methods (hydroxyl number, acid value and viscosity), gel permeation chromatography and spectroscopic methods. The results indicated that high yield of polyols from limonene based materials can be obtained using thiol-ene reaction. These limonene based polyols were used successfully for preparation of rigid polyurethane foams. These foams had regular shape cells and uniform cell size distribution. Thermal studies on these foams indicated that foams were thermally stable up to 250 °C. The glass transition temperature of the foams was higher than 200 °C. These rigid polyurethane foams had high compressive strength and the highest compressive strength of 195 kPa was observed. These foams have good physical–mechanical characteristics and could be suitable for all the applications of rigid polyurethane foams such as thermal insulation of freezers, storage tanks for the chemical and food industries, and packing materials for food industries.  相似文献   

19.
Three high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films from Chronopol (Ch-I) and Cargill Dow Polymers (GII and Ca-I) were analyzed for their degradation under various temperature and relative humidity (RH) conditions. Two sets of plastic films, each containing 11 samples, were randomly hung in a temperature/humidity-controlled chamber by means of plastic-coated paper clips. The tested conditions were 28, 40, and 55°C at 50 and 100% RH, respectively, and 55°C at 10% RH. The three tested PLA films started to lose their tensile properties when their weight-average molecular weight (M w) was in the range of 50,000 to 75,000 g mol–1. The average degradation rate of Ch-I, GII, and Ca-I was 28,931, 27,361, and 63,025 M w/week, respectively. Hence, GII had a faster degradation rate than Ch-I and Ca-I under all tested conditions. The degradation rate of PLA plastics was enhanced by the increase in temperature and relative humidity. This trend was observed in all three PLA plastics (Ca-I, GII, and Ch-I). Of the three tested films, Ch-I was the first to lose its mechanical properties, whereas Ca-I demonstrated the slowest loss, with mechanical properties under all tested conditions.  相似文献   

20.
In this paper we explore the preparation of polyurethanes from spinifex resin biopolymer. Polyurethanes were prepared by both one-shot and pre-polymer (two step) processes. Attenuated total reflection??Fourier transform infrared analysis revealed urethane bond formation in both processes, and the peak intensity for N?CH stretching was more sharp when the network was prepared by the pre-polymer method. Gel permeation chromatography revealed that the molecular weight of synthesized polyurethane increased with respect to the resin starting material, and the molecular weight was further increased when polyurethane was synthesized by the pre-polymer method. The glass transition temperature was also increased for the polyurethanes as compared with the starting resin. Thermo-gravimetric analysis revealed that the thermal stability of the PU-spinifex resin was reduced at intermediate temperatures due to the urethane bond formation. However, thermal degradation properties were superior at higher temperatures due to the cyclization degradation reaction of spinifex-polyurethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号