首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major foregut (gastric mill) ossicles, including the dorsal median tooth, lateral teeth, accessory lateral teeth, and cardiopyloric valve, of hydrothermal vent crabs were dissected and examined during the summer of 1996 from specimens housed at the Natural History Museum of Los Angeles County. Ossicles are described for two species of hydrothermal vent crabs (family Bythograeidae Williams, 1980). The western Pacific Austinograea williamsi Hessler and Martin has an unusual dorsal median tooth. The surrounding cuticular flange is scalloped and bears spinulose setae at the tip of each of the protruding edges, a condition perhaps unique in the Brachyura. The lateral teeth are mostly unremarkable, bearing the typical large anterior denticles and deep serrations seen in other crab families, but with a higher number of serrations than is known for any species previously described. The accessory lateral teeth bear flattened, plate-like spines that are widest basally and that taper to a cylindrical tip. The basic armature of the foregut of Bythograea thermydron Williams, known only from vents in the eastern Pacific, is very similar. Scalloping of the median tooth borders is less pronounced, however, and the shape of the tooth itself and of the plate from which it arises is slightly different. The lateral teeth bear fewer and more widely spaced grooves, and the cardiopyloric valve entrance appears less setose at its extremity. Comparison with foregut ossicles in other crab families based on earlier studies, most of which have not employed SEM, reveals some similarities between bythograeids and some xanthids, but does not clarify the phylogenetic position of the bythograeids. Because of the paucity of other SEM studies of the brachyuran foregut, it is difficult to ascertain whether some of the many spine and setal types in the bythograeid foregut are unique or even unusual compared to those of other crab families. Nothing about the foregut of the vent crabs is indicative of their unusual habitat. Anecdotal observations of feeding in vent crabs indicate that they are opportunistic scavengers and omnivores, which is in keeping with the non-specialized nature of the foregut. The debate between adaptation vs phylogeny as determinants of the form of the gastric mill components is briefly discussed. Received: 10 December 1996 / Accepted: 13 November 1997  相似文献   

2.
The specific composition and abundance of bathyal decapods in the Catalan Sea were investigated. A total of 109 bottom trawls were effected at depths ranging from 141 to 730 m on the continental slope in the Catalan Sea (northwestern Mediterranean) during two sampling cruises in spring and autumn 1991. Multivariate analysis of the samples revealed four groups of the decapod crustacean communities: (1) A shelf-slope transition-zone group at depths between 146 and 296 m, primarily characterized by the presence of Plesionika heterocarpus; (2) an upper-slope community between 245 and 485 m, characterized by the presence of the mesopelagic species Pasiphaea sivado and Sergestes arcticus, with Processa nouveli, Solenocera membranacea and Nephrops norvegicus as secondary species; (3) a middle-slope community below 514 m, with Aristeus antennatus and Calocaris macandreae as the most abundant species; (4) a group at 430 to 515 m, comprising all samples collected exclusively within or in the vicinity of submarine canyons. Mesopelagic decapods were predominant on the slope, while benthopelagic fishes (Merluccius merluccius, Micromesistius poutassou, Gadiculus argenteus) replaced mesopelagic decapods on the shelf. There were seasonal variations, with higher densities of mesopelagic species in spring, which were probably related, among other factors, to variations in the photoperiod. Our surveys also revealed higher species richness in the canyons together with seasonal changes in the megafaunal biomass. Generally, the upper and middle-slope communities both displayed seasonal changes in the composition and abundance of megabenthos.  相似文献   

3.
The zebraperch, Hermosilla azurea Jenkins and Evermann, a warm-temperate marine fish species with a strictly macroalgal diet, has a relatively long digestive tract with an enlarged hindgut and an associated blind caecum (HC). In zebraperch sampled off Santa Catalina Island, California (33°19′42′′N; 118°18′37′′W) in years 1995 through 2001, direct cell counts, gut epithelium assessment of bacterial attachment, and short-chain fatty acid (SCFA) analyses verified that the zebraperch HC possesses a dense and morphologically diverse, fermentative microbiota. Bacterial cell counts and morphological diversity were significantly higher in HC contents compared to anterior gut regions, suggesting that microbial populations were growing along the digestive tract. Similarly, electron micrographs of the HC epithelium revealed attached microbes, further supporting the possibility that these organisms constitute resident microbiota. Five different SCFAs were detected in all three regions of the digestive tract, but levels were up to three times greater in HC contents. Acetate was consistently the prevailing SCFA in all gut regions. Sequence analysis of bacterial 16S rDNA was used to identify predominant bacterial groups in HC contents. Of the seven main bacterial types identified, Enterovibrio spp. were the dominant bacteria in HC contents followed by species of Bacteroides,Faecalibacterium, and Desulfovibrio. Taken together, our findings show that the zebraperch HC harbors a consortium of microbes that appears to assist in the breakdown of algal polysaccharides in the herbivorous diet of the fish.  相似文献   

4.
Morphology of the gastric mill in ten species of euphausiids   总被引:3,自引:0,他引:3  
SEM observation revealed the detailed morphology of the gastric mill in ten species of euphausiids, Bentheuphausia amblyops, Thysanopoda acutifrons, Meganyctiphanes norvegica, Pseudeuphausia latifrons, Euphausia superba, Tessarabrachion oculatum, Thysanoessa longipes, Nematoscelis microps, Nematobrachion boopis, and Stylocheiron maximum. The well-developed gastric mill of euphausiids consists of a pair of cluster spines and a pair of lateral teeth displaying great diversity in morphology. It is suggested that there are three categories of gastric mill and filterpress (gland filter) within euphausiids. One is the well-developed gastric mill with filter-press of B. amblyops; a second is the well-developed gastric mill of M. norvegica, T. oculatum, E. superba, P. latifrons and T. longipes; and the third is the gastric mill without lateral teeth of T. acutifrons, N. microps, N. boopis and S. maximum.  相似文献   

5.
J. E. Cartes 《Marine Biology》1993,117(3):449-457
This study examines the feeding habits of Paromola cuvieri (Risso, 1816) and Geryon longipes A. Milne Edwards, 1881, the only two common deep-sea brachyuran crabs inhabiting the bathyal mud assemblages in the Catalan Sea (Western Mediterranean). Samples were obtained by bottom trawls at depths between 360 and 1871 m during 1983 to 1992. Both species had highly diverse diets, but very low feeding activity, as reflected by the high proportion of empty stomachs. Both characteristics may be important factors enabling deepsea crabs to adapt to bathyal zones, where trophic resources are scarce. The most important food items found in P. cuvieri were fish remains (teleost, sharks) and benthic decapods (Monodaeus couchii, Munida tenuimana). Scavenging activity plays an important role in this species. The diet of G. longipes included a broad range of benthic invertebrates. In the upper middle slope, the bivalve Abra longicallus, decapods (Calocaris macandreae and Monodaeus couchii), echinoderms and polychaetes were the dominant prey, with epibenthic peracarids as a secondary resource. On the lower middle slope, the incidence of decapod crustaceans (C. macandreae, Pontiphilus norvegicus) and peracarids in the diet declined. Small macrobenthic prey (glycerids, cumaceans or amphipods) were rare in the diet of both species, in accordance with the large size of the crab specimens studied. The absence of preferred prey items and the lack of food items of an optimum size on the lower slope may contribute to the progressive decline in abundance of P. cuvieri and G. longipes with increasing depth.  相似文献   

6.
To investigate copepod nauplii ingestion rates on phytoplankton, we have adapted the traditional gut fluorescence technique as it can be used with lower gut pigment concentrations. With the improved technique, laboratory experiments were performed to estimate functional responses for nauplii of Calanus helgolandicus and Centropages typicus. Nauplii were raised from eggs to copepodites and the experiments were performed with stages NIV-NV. Gut evacuation rates and ingestion rates were measured on Isochrysis galbana at different concentrations. Specific ingestion rates ranged between 0.038–0.244 μg C μg−1 nauplii C d−1 for C. typicus and 0.041–1.412 μg C μg−1 nauplii C d−1 for C. helgolandicus. Both species showed a type III functional response, reaching a saturation concentration at around 600 μgC l−1 for C. typicus and 800 μgC l−1 for C. helgolandicus. An erratum to this article can be found at  相似文献   

7.
J. E. Cartes 《Marine Biology》1993,117(3):459-468
The composition of the diet and daily cicle of predatory activity of pasiphaeid shrimps in the Northwestern Mediterranean were established; special attention was focussed on nocturnal feeding habits close to the bottom. Daily activity in both species was studied in two continuous 24-h sampling periods. Samples were obtained using bottom trawls between 1988 and 1990. Both species fed on benthic prey items at night. The nocturnal diet of Pasiphaea multidentata consisted of gammarid amphipods, isopods (Cirolana borealis) and macruran decapods (Calocaris macandreae). Nocturnal feeding activity was carried out only by large specimens (cephalothorax length >28 mm), which stayed close to the bottom during the nighttime. In contrast, the specimens collected during the daytime exhibited highly digested remains of pelagic prey (hyperiids, fishes, euphausiids, chaetognaths) ingested as a result of predatory higher activity in the water column the night before. The feeding strategy of P. sivado was parallel to that of P. multidentata. At night large specimens were located near the bottom and fed on suprabenthic gammarid amphipods. This nocturnal feeding activity by both these mesopelagic pasiphaeid species furnishes evidence of energy transfer from the benthos to the planktonic system in bathyal communities. Changes were observed in the diet of P. multidentata with depth. Crustaceans made up a larger share of the diet of P. multidentata on the lower slope than on the upper middle slope, probably because of changes undergone by bathyal communities with increasing depth. The feeding rate was higher in the submarine canyons, where the diet is also more specialised. Dietary overlap between the two pasiphaeids was very low, due to the different size range of prey exploited.  相似文献   

8.
Adult zebraperch, Hermosilla azurea, were found to be functional herbivores in that animal matter constituted <0.01% of the total dry weight of stomach contents of fish collected off Santa Catalina Island in southern California waters. The diet of these fish consisted mainly of red algae (88.2% by dry wt) and also small amounts of brown (7.8%) and green (4.0%) algae. The most important dietary item, the filamentous red algae Polysiphonia spp., was found in >78% of the stomachs and comprised >60% of the contents by dry weight. The digestive tract was long, on average 4.0 times the standard length of the fish, and was composed of the stomach, pyloric caeca, intestine, hindgut chamber with a blind caecum, and rectum. The mean pH of the cardiac stomach was acidic (3.9), whereas that of the intestine was nearly neutral (6.9) and that of the hindgut and blind caecum slightly acidic (6.3 and 6.6, respectively). Algal foods are apparently digested by acid lysis in the stomach and by microbial fermentation in the hindgut. Zebraperch assimilated nutritional constituents from six species of algae with varying degrees of efficiency: carbon (73.7 to 89.7%), nitrogen (72.4 to 84.5%), and protein (71.9 to 94.9%). The fish assimilated these constituents as efficiently or more efficiently from three species of nondietary brown algae as from three species of dietary red and green algae. These results show that zebraperch, like their tropical and subtropical relatives (members of the genus Kyphosus), can digest a wide variety of algae including brown algae containing defensive secondary compounds. Received: 3 November 1997 / Accepted: 19 June 1998  相似文献   

9.
By applying a microinjection technique previously used in cell biology, a pH-sensitive dye, 2,7-bis(2-carboxyethyl)-5,6-carboxyfluorescein) (BCECF), was injected into the gut of the copepod Calanus helgolandicus to determine pH under a range of feeding conditions. The median gut pH of the fore- and hindguts of starved individuals was 6.86 and 7.19, respectively. This was a consistently lower pH than that observed in copepods feeding on either the diatom Thalassiosira weissflogii, the dinoflagellate Prorocentrum micans, or the coccolithophorid Emiliania huxleyi (Strain 92D), all of which had a median gut pH>7.0. In all treatments, the median pH of the foregut was more acidic than the median of the hindgut, implying that the foregut is the site of acid secretion. The results, which demonstrate pH values down to 6.11, are discussed in terms of coccolith dissolution, pigment degradation and digestive enzyme activity.  相似文献   

10.
The difference in morphology between zoeae of Cancer magister Dana from Alaskan and Californian waters was documented to determine if the morphological variation is attributable to environmental influences. First-stage zoeae from Alaska have significantly longer carapace spines than zoeae from central California. The dorsal, rostral and lateral carapace spines were 14, 14 and 29% longer, respectively, in the Alaskan zoeae. The effect of temperature was tested on zoeal morphology as it is an obvious environmental difference between Alaskan and Californian waters. Ovigerous female crabs collected in southeastern Alaska in 1984 were held at 1°, 5°, 10° and 15° C until hatching occurred. Eggs were sampled seven times during the incubation period, and relative mortality, egg diameter and development stage were measured. All of the crabs and eggs at 1° C died before hatching occurred. Egg mortality averaged less than 2% in the other temperature treatments. Egg diameter increased significantly over the incubation period for all temperatures. Developmental rate of the embryos was inversely related to temperature. Hatching first occurred in 42 d at 15° C, 60 at 10° C and 160 d at 5° C. Newly hatched zoeae were collected and body length, dorsal, rostral and lateral carapace spines were measured. Significant differences existed between all temperatures for all spine lengths, with longer spines occurring at lower temperatures. Zoeal body lengths were also significantly different between the three temperatures. The results of this study question the use of spine lengths to distinguish similar larval species.  相似文献   

11.
Scanning-electron-microscope investigations on the test microstructure of two regular sea urchins, Paracentrotus lividus (Lamarck) and Arbacia lixula Linné have been especially devoted to the sutures between test plates, and the spines. Some features of both these components may be related to ecological and ethological differences between the two species. It is well documented that the structure of the sea urchin's test plates consists of a meshwork of calcareous trabecules embedded within the mesenchyme. The suture between the two lines of plates of each radial or intertradial zone exhibits a gap which plays some part in the process of the plates' growth. However, the gap may also constitute a complementary stress-breaker of mechanical forces (such as waves) which are exerted upon the test in the natural environment. In A. lixula this gap is so wide and the height: diameter ratio so low, that this species is particularly well fitted to bear physical stress and force on its apical region: since A. lixula almost exclusively inhabits vertical or subvertical rocky substrates at 2 to 15 m depth, where wave action is mainly exerted perpendicular to the substrate, these particular features of sutures and test shape may be a morphofunctional adaptation to this habitat. The sutures of P. lividus exhibit a narrower gap, making this species less able to bear strong apical pressure; consequently, P. lividus usually occurs on exposed horizontal or gently inclined substrates, but also inhabits sea-grass beds as deep as 15 to 20 m. The spines of P. lividus bear deep longitudinal grooves with lateral teeth, which seem especially fitted for collecting and transporting organic particles from the top of the spines to the apical region of the test where they are digested and assimilated by coelomocytes and epithelial cells. In the natural environment, the slightest water motion provides the spines with suspended particles; in extremely sheltered places or in aquaria however, the spines actively collect particles. Therefore, P. lividus populations can thrive in places where food resources other than suspended particles are scarce. The grooves on the spines of A. lixula are less marked, and thus unsuitable for collection of suspended particles. This species can therefore fulfil its energy requirements only by grazing and absorption of dissolved material. It appears that although belonging to the same biocoenosis, P. lividus and A. lixula do not occupy the same ecological niche. Their potential utilization in either urban or chemical pollution monitoring studies is discussed.  相似文献   

12.
Artemia sp. shells were evaluated to determine their accuracy for tracing the passage of algal filaments through the gut of the damselfish Pomacentrus amboinensis Bleeker, 1868 (family Pomacentridae), an omnivorous coral reef fish. An automatic faeces-collection apparatus enabled the quantitative collection of markers and faeces in the laboratory. Defecation rates were similar for light and heavy doses of Artemia sp. shells and controls, indicating no detrimental effects of Artemia sp. shells on the gut throughput rate of P. amboinensis. In addition, similar rates and patterns of the passage of Artemia sp. shells and the algal markers Enteromorpha sp. and Lyngbya sp. indicated that Artemia sp. shells provide a reliable representation of the throughput rate of algal filaments. The mean throughput time of P. amboinensis was 4.6 h ±0.3 SE, with a modal recovery time of 4 h. Laboratory throughput estimates were validated by comparing the distribution patterns of Artemia sp. shells in the dissected gut of specimens administered markers in the laboratory and field. In addition, the retention of markers in the stomach of P. amboinensis suggested a likely site of prolonged processing. Received: 24 October 1996 / Accepted: 18 March 1997  相似文献   

13.
Structure and ultrastructure of the digestive tract of the ectoparasitic stages of the Antarctic isopod Gnathia calva, collected in the Weddell Sea and around the Antarctic Peninsula in the 1984–1985 season, are briefly described. There are only two digestive glands, with an ultrastructure similar to that of other isopods. The gut is divided into six regions: oesophagus, stomach, dilatable reservior for sucked-in blood, sphincter, rectal vesicle with symbiontic bacteria, and rectum. The highly dilatable anterior hindgut (reservoir) takes part in the resorption of nutrients and stores lipids and glycogen. The rectal vesicle has an epithelium with all the features of an organ with high metabolism and the capacity for the transportation of small molecules. The surface is increased by irregular microvilli. A very thin intima and a basal labyrinth are present. The presence of symbiontic bacteria is discussed in correlation with the haematophagous nutrition of G. calva.  相似文献   

14.
Phytoplankton xanthophylls in the gut contents of the copepods Calanus pacificus, Corycaeus anglicus, and Paracalanus parvus, collected from 5 stations off San Onofre, California, in June 1982, were measured by reverse phase, high-performance liquid chromatography (HPLC). The dinoflagellate pigment, peridinin, was usually the most abundant xanthophyll in the guts of all three species of copepods. Evidently, feeding was principally on dinoflagellates (which dominated the phytoplankton biomass). The level of feeding activity, rather than the class of phytoplankton ingested, seemed to differentiate the behaviors of the copepods. Xanthophyll content per unit copepod wet weight was higher in Corycaeus anglicus and Paracalanus parvus than in Calanus pacificus. Chlorophyll a fluorescence of the copepod gut contents was measured in conjunction with the analysis of gut xanthophylls. The xanthophyll content of the gut varied directly with the concentration of chlorophyll a in the gut. Xanthophyll content was not related to the concentration of pheopigments in the gut. Apparently, the xanthophylls that were detected were due to the presence of recently ingested phytoplankton biomass.  相似文献   

15.
Estimates of feeding rates, alimentary tract structure and temporal patterns of food processing obtained from twelve species of nominally herbivorous fishes on the northern Great Barrier Reef were compared. These included members of the families Acanthuridae, Scaridae and Kyphosidae. Based on an analysis of diet and short-chain fatty acid (SCFA) profiles from a previous study we initially partitioned the twelve species into four dietary categories, as follows: (a) Category 1: herbivores with a diet of macroscopic brown algae and high SCFA profiles in the hindgut region (Naso unicornis, Kyphosus vaigiensis); (b) Category 2: herbivores feeding on turfing and filamentous red and green algae with moderate SCFA profiles in the hindgut region (N. tonganus, K. cinerascens, Zebrasoma scopas, Acanthurus lineatus); (c) Category 3: zooplankton feeders with moderate SCFA profiles (N. vlamingii, N. brevirostris); (d) Category 4: species feeding on detrital and sedimentary materials with low levels of SCFA (Chlorurus microrhinos, Scarus schlegeli, Ctenochaetus striatus, A. olivaceus). The purpose of this comparison was to determine whether measures of feeding activity, alimentary tract structure, and food processing were concordant with diet. A dichotomy in feeding rates was observed. Species with a diet of algae and zooplankton (categories 1–3) had slower feeding rates than those feeding on detrital aggregates and sediment (category 4). The pattern of food processing also followed the same dichotomy with species of categories 1–3 retaining food in the alimentary tract overnight and commencing the feeding day with substantial amounts of food in the intestine and hindgut. Category-4 species commenced the feeding day with empty alimentary tracts suggesting a rapid turnover of gut contents. Within the herbivorous and zooplankton-feeding species neither alimentary tract structure nor food processing mode were predicted by diet or SCFA profiles. A hindgut fermentation chamber was present in K. vaigiensis but not in N. unicornis, a species with high levels of SCFA in the hindgut region and a diet of brown macroscopic algae. In contrast N. vlamingii, with a diet dominated by animal matter, retained large amounts of food material in a hindgut chamber over the entire feeding cycle. In tropical perciform fishes, herbivory and fermentation are not associated with the alimentary tract structures that characterise herbivorous terrestrial vertebrates. Estimates of the abundance of the different groupings of nominally herbivorous fishes indicated that the dominant elements in the reef grazing and browsing fauna were consumers of detrital and sedimentary materials. These could not be classified as herbivores. Members of this group were dominant in all habitats investigated. Explicitly herbivorous taxa were a minority component in all habitats investigated.Communicated by G.F. Humphrey, Sydney  相似文献   

16.
Wood falls in the deep sea have recently become the focus of studies showing their importance as nutrients on the deep-sea floor. In such environments, Crustaceans constitute numerically the second-largest group after Mollusks. Many questions have arisen regarding their trophic role therein. A careful examination of the feeding appendages, gut contents, and gut lining of Munidopsis andamanica caught with wood falls revealed this species as a truly original detritivorous species using wood and the biofilm covering it as two main food sources. Comparing individuals from other geographic areas from substrates not reported highlights the galatheid crab as specialist of refractory substrates, especially vegetal remains. M. andamanica also exhibits a resident gut microflora consisting of bacteria and fungi possibly involved in the digestion of wood fragments. The results suggest that Crustaceans could be full-fledged actors in the food chains of sunken-wood ecosystems and that feeding habits of some squat lobsters could be different than scavenging.  相似文献   

17.
 Temporal responses of eyes from four decapod species taken from sublittoral (Pandalus montagui Leach), coastal [Nephrops norvegicus (L.)] and deep-sea [Paromola cuvieri (Risso) and Chaceon (=Geryon) affinis A. Milne Edwards and Bouvier] habitats were examined. The electroretinogram responses to a range of sinusoidal intensity modulations between 0.5 and 40 Hz were recorded. Recordings were made from individuals adapted successively to two background light intensities. The sublittoral and coastal species showed faster responses when adapted to the higher light level and they also responded best to intermediate frequencies. When adapted to the lower light level, all species responded most strongly to low-frequency stimuli. Physiological and ecological reasons for the differences in responses are suggested. Received: 2 July 1999 / Accepted: 26 October 1999  相似文献   

18.
The morphology and some functions of the gut of Fritillaria pellucida and Fritillaria formica (Fritillaridae) were investigated by light and electron microscopy, and also by means of histochemical and immunohistochemical techniques. Fritillarids, very important for their abundance and ecological impact in marine ecosystems, have a very simplified gut: a straight oesophagus connects the pharynx to the digestive nucleus, composed of globular stomach and rectum, connected dorsally through a very short proximal intestine. The latter is characterised by a few (two to four) extremely specialised cells, completely filled with mitochondria associated tightly with membrane infoldings showing strong ATP-ase activity, and probably involved in the osmoregulation of internal body fluids. The gut is formed of an extremely low number of cells, which, although poorly diversified, are very large in the stomach and rectum. Food transfer along the gut depends on and is regulated by well-developed cardiac and pyloric valves, and signs of general digestive and absorptive activity are recognisable all along the brush border of the main tracts. The macroscopic organisation and cytological characters of the gut in fritillarids are completely different from those of the oikopleurids. In particular, fritillarids lack specialised cells for endocytosis and intracellular digestion, like those described in the genus Oikopleura. The general simplification and specialisation observed in Fritillaria gut may account for their elevated growth rate and abundant diffusion in all oceans.  相似文献   

19.
We studied the resistance of benthic prey organisms (Ostracoda, Hydrobia spp., Macoma balthica) to digestion by juvenile flounder, Platichthys flesus (L.), in a series of aquarium experiments. Results showed that some food species are able to survive the gut passage (Ostracoda 53 to 75%, Hydrobia spp. 46 to 92%). This has ecological implications, as increasing eutrophication of the Baltic Sea favours prey species that are nondigestible for the juvenile flounder. Thus, seemingly small changes in food-web structure may have unpredictable effects for the predatory fish. Received: 8 March 1997 / Accepted: 14 March 1997  相似文献   

20.
Relative gut length, Zihler’s index, and relative gut mass were measured in four species of prickleback fishes and the effects of ontogeny, diet, and phylogeny on these gut dimensions were determined. Of the four species, Cebidichthys violaceus and Xiphister mucosus shift to herbivory with growth (>45 mm SL), whereas X. atropurpureus and Anoplarchus purpurescens remain carnivores. A. purpurescens belongs to a carnivorous clade, and the three other species belong to an adjacent, herbivorous clade. Gut dimensions were compared in three feeding categories of the four species: (1) small, wild-caught juveniles representing the carnivorous condition before two species shift to herbivory; (2) larger, wild-caught juveniles representing the natural diet condition of the two carnivores and the two species that have shifted to herbivory; and (3) larger, laboratory-raised juveniles produced by feeding a high-protein artificial diet to small juveniles until they have reached the size of the larger, wild-caught juveniles. Comparisons of gut dimensions in categories (1) versus (2) tested for an ontogenetic effect, in (2) versus (3) for a dietary effect, and within each category for a phylogenetic effect. C. violaceus and X. mucosus increased gut dimensions with increase in body size and did not change ontogenetic trajectory in gut dimensions on the high-protein artificial diet, suggesting that they are genetically programmed to develop relatively large guts associated with herbivory. X. atropurpureus increased its gut dimensions with increase in size similar to its sister taxon, X. mucosus, suggesting a phylogenetic influence, but decreased gut dimensions on the high-protein artificial diet, suggesting phenotypic plasticity. Nevertheless, X. atropurpureus displayed a larger gut than A. purpurescens, further evidence that it evolved in an herbivorous clade. A. purpurescens possessed a relatively small gut that was little affected by ontogeny or diet. Ontogeny and phylogeny more than diet appear to influence gut dimensions in the four species, thus favoring genetic adaptation over phenotypic plasticity as the major force acting on digestive system features in the two prickleback clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号