首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This article presented a numerical investigation of a hybrid energy-driven organic Rankine cycle (ORC) cogeneration system, involving a solar ORC and a biogas boiler. The biogas boiler with a module of solar parabolic trough collectors (PTCs) is employed to provide heat source to the ORC via two distinct intermediate pressurized circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy–exergy and economic analysis with the organic working fluid R123. The effects of various parameters such as the evaporation and condensation temperatures on system performance were investigated. The net power generation efficiency of the cogeneration system is 11.17%, which is 25.8% higher than that of the base system at an evaporation temperature 110°C. The exergy efficiency of ORC system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting in an approximate annual saving from $1,700 to $3,000. Finally, a case study based on the consideration of typical rural residence was performed, which needs a payback period of 7.8 years under the best case.  相似文献   

2.
This paper presents the performance of the solid-oxide fuel cell/gas turbine hybrid power generation system with heat recovery waste unit based on the energy and exergy analyses. The effect of air inlet temperature and air/fuel ratio on exergy destruction and network output is determined. For the numerical calculations, air inlet temperature and air fuel ratio are increased from 273 to 373 K and from 40 to 60, respectively. The results of the numerical calculations bring out that total exergy destruction quantity increases with the increase of air inlet temperature and air/fuel ratio. Furthermore, the maximum system overall first and second law efficiencies are obtained in the cases of air inlet temperature and air/fuel ratio equal to 273 K and 60, respectively, and these values are 62.09% and 54.91%.  相似文献   

3.
This paper describes the application of exergy and extended exergy analyses to large complex systems. The system to be analysed is assumed to be at steady state, and the input and output fluxes of matter and energy are expressed in units of exergy. Human societies of any reasonable extent are indeed Very Large Complex Systems and can be represented as interconnected networks of N elementary "components", their Subsystems; the detail of the disaggregation depends on the type and quality of the available data. The structural connectivity of the "model" of the System must correctly describe the interactions of each mass or energy flow with each sector of the society: since it is seldom the case that all of these fluxes are available in detail, some preliminary mass- and energy balances must be completed and constitute in fact a part of the initial assumptions. Exergy accounting converts the total amount of resources inflow into their equivalent exergetic form with the help of a table of "raw exergy data" available in the literature. The quantification of each flow on a homogeneous exergetic basis paves the way to the evaluation of the efficiency of each energy and mass transfer between the N sectors and makes it possible to quantify the irreversible losses and identify their sources. The advantage of the EEA, compared to a classical exergy accounting, is the inclusion in the system balance of the exergetic equivalents of three additional "Production Factors": human Labour, Capital and Environmental Remediation costs. EEA has an additional advantage: it allows for the calculation of the efficiency of the domestic sector (impossible to evaluate with any other energy- or exergy-based method) by considering the working hours as its product. As implied in the title, an application of the method was made to a model of the province of Siena (on a year 2000 database): the results show that the sectors of this Province have values of efficiency close to the Italian average, with the exception of the commercial and energy conversion sectors that are more efficient, in agreement with the rather peculiar socio-economic situation of the Province. The largest inefficiency is found to be in the transportation sector, which has an efficiency lower then 30% in EEA and lower than 10% in classical exergy accounting.  相似文献   

4.
Seaplanes have become an important tool along with rapidly developing technology in modern transportation for many countries related to sea. Considering the environmental evaluation for these aircraft, decreasing fossil fuels consumption and energy efficiency are important points for sustainability. For this purpose, in this study, first, the energy and exergy analyses based on the real data of a turboprop engine used in seaplane taken as the reference were performed. Then, new indicators developed for the sustainable propulsion index were examined and evaluated separately. The analyses were made for an altitude of 9000 ft and three different dead state temperatures of ?33°C, ?3°C, and 27°C. According to the analyses, while the average energy efficiencies were found to be 34.7%, 37.8%, and 40.7%, the average exergy efficiencies were found to be 19.24%, 21.25%, and 23.20%, respectively. In addition, the improvement potential due to irreversibility and entropy production for each case was also calculated and the results of the sustainable emission index were found to be very low. At the end of the study, the results were evaluated and some suggestions for the effective use of energy in the seaplanes were made.  相似文献   

5.
Abstract

This article presents the importance and usefulness of Second Law (exergy) analysis for evaluating and comparing solar cookers in meaningful ways. The thermodynamic considerations required for the development of rational and meaningful methodologies for the evaluation and comparison of the efficiency of the solar cookers were defined. Energy and exergy equations were also developed to obtain energy and exergy efficiencies of the solar cookers. The evaluation of the solar cookers requires a measure of efficiency, which is rational, meaningful, and practical. Exergy analysis provides an alternative means of evaluating and comparing the solar cookers. Since exergy is a measure of the quality or usefulness of energy, exergy efficiency measures are more significant than energy efficiency measures, exergy analysis should be considered in the evaluation of the solar cookers.  相似文献   

6.
The rapid decrease of energy resources has accelerated studies on energy efficiency. Energy efficiency refers to the effective use of energy, in other words, completing a specific task to the required standard by using less energy. Exergy is an effective instrument to indicate the effective and sustainable use of energy in systems and processes. Transportation is an important part of human life. The studies on energy saving and the effective use of energy in different areas around the world have also increased for transportation systems and vehicles. With the more effective use of fuel, there will be potential benefits for the environment as well as a reduction in operating costs. This study includes energy and exergy analyses as well as a sustainability assessment by using C8H16 as a fuel at different engine powers (150–600 SHP (shaft horse power)), for the piston-prop helicopter engine. The maximum exergetic sustainability index was found at the power that provided the maximum energy and exergy efficiency. As a result of this index, the lowest waste exergy ratio, the lowest exergy destruction factor, and the lowest environmental impact factor were obtained. The highest exergy destruction and the highest exergy loss value were obtained at maximum power (600 SHP).  相似文献   

7.
Biomass energy and carbon capture and storage (BECCS) can lead to a net removal of atmospheric CO2. This paper investigates environmental and economic performances of CCS retrofit applied to two mid-sized refineries producing ethanol from sugar beets. Located in the Region Centre France, each refinery has two major CO2 sources: fermentation and cogeneration units. “carbon and energy footprint” (CEF) and “discounted cash flow” (DCF) analyses show that such a project could be a good opportunity for CCS early deployment. CCS retrofit on fermentation only with natural gas fired cogeneration improves CEF of ethanol production and consumption by 60% without increasing much the non renewable energy consumption. CCS retrofit on fermentation and natural gas fired cogeneration is even more appealing by decreasing of 115% CO2 emissions, while increasing non renewable energy consumption by 40%. DCF shows that significant project rates of return can be achieved for such small sources if both a stringent carbon policy and direct subsidies corresponding to 25% of necessary investment are assumed. We also underlined that transport and storage cost dilution can be realistically achieved by clustering emissions from various plants located in the same area. On a single plant basis, increasing ethanol production can also produce strong economies of scale.  相似文献   

8.
A chemical absorption, post-combustion CO2 capture unit is simulated and an exergy analysis has been conducted, including irreversibility calculations for all process units. By pinpointing major irreversibilities, new proposals for efficient energy integrated chemical absorption process are suggested. Further, a natural-gas combined-cycle power plant with a CO2 capture unit has been analyzed on an exergetic basis. By defining exergy balances and black-box models for plant units, investigation has been made to determine effect of each unit on the overall exergy efficiency. Simulation of the chemical absorption plant was done using UniSim Design software with Amines Property Package. For natural-gas combined-cycle design, GT PRO software (Thermoflow, Inc.) has been used. For exergy calculations, spreadsheets are created with Microsoft Excel by importing data from UniSim and GT PRO. Results show the exergy efficiency of 21.2% for the chemical absorption CO2 capture unit and 67% for the CO2 compression unit. The total exergy efficiency of CO2 capture and compression unit is 31.6%.  相似文献   

9.
随着四大热电中心的建成投产,北京市完成了由燃机替代煤机的转变,实现了更加智能化的清洁能源发电供热。2013年北京市碳市场启动运行,给刚起步的燃气供热机组运行赋予了更广阔和更深远的意义;2017年12月19日,以发电行业为突破口,全国碳排放交易体系正式启动,北京市热电行业低碳运行管理意义重大而深远。本文以燃气热电联产机组运行数据为基础,通过计算分析,提出燃气热电联产机组清洁、高效、低碳运行方式,为全国碳市场启动后,北京乃至全国热电行业低碳运行管理提供经验借鉴。  相似文献   

10.
Abstract

Heating and air-conditioning systems have very low exergetic efficiency as they dissipate primary energy resources at low temperatures usually between 90 and 60°C. This compounds the problem that buildings spend approximately 30% of all the energy consumed in the U.S. for heating and air-conditioning. The overall result is a large entropy production and long-term environmental degradation that can be resolved only by substituting primary energy resources by low-temperature, waste, or alternative energy resources, usually available below 50°C. For such a replacement to be feasible the environmental cost of exergy production must be factored into calculations and compatible HVAC systems must be developed without any need for temperature peaking or equipment oversizing. This article addresses environmental and often-conflicting problems associated with exergy production by HVAC systems and presents an analytical optimization and control algorithm. Results indicate that when a careful design optimization is accompanied by a dynamic control of the split between radiant and convective means of satisfying thermal HVAC loads, exergy efficient sustainable buildings may be cost effective and environmentally benign.  相似文献   

11.
This study examines parametric approaches to the calculation of refrigerant-based CO2 emissions in different cooling areas. Both the exergy analyses of refrigerants, used in domestic, commercial, transportation and industrial applications, and the environmental performances regarding exergetic irreversibility are investigated separately. Then, CO2 emissions caused by systems are examined via two different parameters, I°) Environmental Impact Factor and ??°) Integrated Impact Factor (CIF). The study is based on a vapor compression cooling cycle model, commonly preferred by cooling applications, and the analyses have been made for 1 kW cooling capacity in relation to evaporator temperatures of the systems. In all cooling application, R134A gas stands out among the others in terms of coefficient of performance and exergy efficiency. Moreover, both emission analyses show that it has the lowest emission value. The paper concludes with an evaluation of the reasons for the refrigerant choice, the design and the selection of such a system, and why exergetic and environmental parameters should be preferred.  相似文献   

12.
ABSTRACT

Remote communities in the North of Ontario survive in isolation as their proximity to the southern industrial sector of the province limits their accessibility to the major grid. The lack of grid connection has led to antiquated methods of power generation which pollute the environment and deplete the planet of its natural resources. Aside from the primary means of electricity generation being by diesel generators, generation infrastructure is deteriorating due to age and the stagnation of the power supply has led to communities facing load restrictions. These challenges may be resolved by introducing clean energy alternatives and providing a fuel blend option. The primary energy sources investigated in this research are solar, wind, and hydrogen. To assess the viability of these energy production methods in Northern communities, an exergy analysis is employed as it utilizes both the first and second law of thermodynamics to determine systems’ efficiency and performance in the surroundings. Local weather patterns were used to determine the viability of using wind turbines, solar panels and/or hydrogen fuel cells in a remote community. Through analysis of the resources available at the community, it was determined that the hydrogen fuel cell was best suited to provide clean energy to the community. Wind resulted in low efficiency in the range of 2–3% while solar efficiencies resulted in ranges of 18 – 19%, as the seasonal variations between the three years is not very great. Due to the higher operating efficiencies observed of the PV panels it would also be an attractive alternative to diesel generators however, the lack of consistent operation above 30% efficiency throughout the year, resulted in hydrogen fuel cells being a better alternative.  相似文献   

13.
ABSTRACT: Border irrigation systems like most of the other surface irrigation systems, do not need too much energy and special equipment. Thus, many farmers have used this system for a long time. On the other hand, design of surface irrigation systems including border irrigation requires many input parameters, and need intensive engineering calculations. The burden of these requirements probably led the users to experimental design of the systems with low efficiencies. However, accurate design and high quality optimization of the border irrigation system that can result in a highly efficient system is possible. In this study, an optimization model for border irrigation system is presented. The Hook Jeev's pattern search optimization method in conjunction with a general mathematical model of border irrigation is used to maximize the irrigation application efficiency. The border irrigation storage and distribution efficiencies, border slope and length, inflow rate, cutoff time, and the Manning's roughness coefficient are selected as constraints. The model is applied to field-measured data. The results show that it is possible to select a suitable combination of the border system's parameters (border's length, inflow rate, and cutoff time) to obtain a maximum application efficiency.  相似文献   

14.
Solar energy is one of the most important renewable energy sources, but it is not available every time and every season. Thus, storing of solar energy is important. One of the popular methods of heat storage is use of phase change materials (PCMs) which have large thermal energy storage capacity. In this study, the heat storage tank in a domestic solar water heating system was chosen as control volume. The experiments were performed in the province of Elaz?g, Turkey, in November when solar radiation was weak due to cloudy sky. The heat storage tank of the system was modified to fill PCM between insulation and hot water part. A few PCMs which are Potassium Fluoride, Lithium Metaborate Dihydrate, Strontium Hydroxide Octahydrate, Barium Hydroxide Octahydrate, Aluminum Ammonium Sulfate, and Sodium Hydrogen Phosphate were analyzed to proper operating conditions using a Differential Scanning Calorimeter (DSC) and the best PCM was obtained with the Aluminum Ammonium Sulfate and Sodium Hydrogen Phosphate mixture. Thus, eutectic PCM was obtained and used in a heat storage tank of the solar water heating system. Energy and exergy analysis of heat storage tank was performed with and without the PCM. Energy and exergy analysis has shown that the heat storage tank with the PCM is more efficient than without the PCM and the maximum exergy efficiency was obtained as 22% with the heat storage tank with the PCM.  相似文献   

15.
The heat-pipe solar water heating (HP-SWH) system and the heat-pipe photovoltaic/thermal (HP-PV/T) system are two practical solar systems, both of which use heat pipes to transfer heat. By selecting appropriate working fluid of the heat-pipes, these systems can be used in the cold region without being frozen. However, performances of these two solar systems are different because the HP-PV/T system can simultaneously provide electricity and heat, whereas the HP-SWH system provides heat only. In order to understand these two systems, this work presents a mathematical model for each system to study their one-day and annual performances. One-day simulation results showed that the HP-SWH system obtained more thermal energy and total energy than the HP-PV/T system while the HP-PV/T system achieved higher exergy efficiency than the HP-SWH system. Annual simulation results indicated that the HP-SWH system can heat the water to the available temperature (45°C) solely by solar energy for more than 121 days per year in typical climate regions of China, Hong Kong, Lhasa, and Beijing, while the HP-PV/T system can only work for not more than 102 days. The HP-PV/T system, however, can provide an additional electricity output of 73.019 kWh/m2, 129.472 kWh/m2, and 90.309 kWh/m2 per unit collector area in the three regions, respectively.  相似文献   

16.
A common characteristic of carbon capture and storage systems is the important energy consumption associated with the CO2 capture process. This important drawback can be solved with the analysis, synthesis and optimization of this type of energy systems. The second law of thermodynamics has proved to be an essential tool in power and chemical plant optimization. The exergy analysis method has demonstrated good results in the synthesis of complex systems and efficiency improvements in energy applications.In this paper, a synthesis of pinch analysis and second law analysis is used to show the optimum window design of the integration of a calcium looping cycle into an existing coal power plant for CO2 capture. Results demonstrate that exergy analysis is an essential aid to reduce energy penalties in CO2 capture energy systems. In particular, for the case of carbonation/calcination CO2 systems integrated in existing coal power plants, almost 40% of the additional exergy consumption is available in the form of heat. Accordingly, the efficiency of the capture cycle depends strongly on the possibility of using this heat to produce extra steam (live, reheat and medium pressure) to generate extra power at steam turbine. The synthesis of pinch and second law analysis could reduce the additional coal consumption due to CO2 capture 2.5 times, from 217 to 85 MW.  相似文献   

17.
This study examines energetic and exergetic performances of display cases’ units used in market applications depending on different refrigerants. Besides CO2 emission potential of each refrigerant based on exergetic irreversibility obtained from analyses is calculated by the method of Total Equivalent Warming Impact (TEWI). In this study, 1 kW cooling capacity and vapor compression cooling cycle is taken as reference and refrigerants of R-22, R-134a, R-404A, and R-507 together with alternative refrigerant R-407C and R152a are examined separately. According to analyses, R-404A gas, used widely in market applications, has low performance with average COP 3.89 and average exergy efficiency 55.20%. R-152a gas has the best performance by the thermodynamics parameters including COP 4.49, exergy efficiency 63.79%, and 0.23 kW power consumption and emission parameter 14097.490 ton CO2/year. Although COP is used as a criterion to evaluate the systems, this study finally emphasizes the importance of exergy analysis and TEWI method which are important methods to determine irreversibility and emission potential of the systems.  相似文献   

18.
Design and modernization of the micro turbojet engine technology have an important problem related to fuel consumption in terms of economics and environmental. For this purpose, in this study, first, energy and exergy efficiencies of the Jet A-1 and seven different alternative fuels were examined. Then, Exergy—based sustainability indicators were evaluated via exergetic irreversibility seperately. For this purpose, operational data of SR-30 micro-turbojet engine was taken as reference. According to this, the exergy efficiencies of engine as fuel for blending of methanol and ethanol were fixed with 22.35% and 20.56%, respectively. At the end of the study, some evaluations about alternative fuels and sustainability were made.  相似文献   

19.
In this study, exergetic and exergoeconomic analysis methods are applied to a four-cylinder, spark ignition (SI), naturally aspirated and air-cooled piston-prop aircraft engine in the cruise phase of flight operations. The duration of cruise is selected to be 1 h. Three parameters, altitude, rated power setting (PS), and air-to-fuel ratio (AF), are varied by the calculation of the max–min values of exergy analysis. Based on the results of energy analysis, the values for the maximum energy efficiency and fuel consumption flow rate are calculated to be 21.73% and 28.02 kg/h, respectively, at 1000-m altitude and 75% PS. The results of exergy analysis indicate that all exergetic values vary from 65% to 75% PS, while this increase is not seen in exergoeconomic analysis. While the maximum exergy input rate is obtained to be 405.60 kW, exergy efficiency has the minimum value with 14.43% and exergy destruction rate has the maximum value with 168.48 kW. These values are achieved at 3000-m altitude and 18 AFs. The maximum average exergy cost of the fuel is calculated to be 130.77 $/GJ at 1000-m altitude, 13 AF ratios, and 65% PS. At this point, while the minimum cost rate associated with the exergy destruction is obtained to be 40.29 $/h, the maximum exergoeconomic factor is found to be 19.98%.  相似文献   

20.
In our continued effort in reducing resource consumption, greener technologies such as rainwater harvesting could be very useful in diminishing our dependence on desalinated or treated water and the associated energy requirements. This paper applies exergy analysis and exergetic efficiency to evaluate the performance of eight different scenarios of urban rainwater harvesting systems in the Mediterranean-climate Metropolitan Area of Barcelona where water is a scarce resource. A life cycle approach is taken, where the production, use, and end-of-life stages of these rainwater harvesting systems are quantified in terms of energy and material requirements in order to produce 1 m3 of rainwater per year for laundry purposes. The results show that the highest exergy input is associated with the energy uses, namely the transport of the materials to construct the rainwater harvesting systems. The scenario with the highest exergetic efficiency considers a 24 household building with a 21 m3 rainwater storage tank installed below roof. Exergy requirements could be minimized by material substitution, minimizing weight or distance traveled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号