首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The anaerobic digestion of industrial wastes produces a biogas that is an alternative to the use of fossil fuels for energy production. At the end of this process, the stabilized biomass presents high levels of nutrients, which can be used both as biofertilizers in agriculture and for the biodegradation of contaminants in the soil through improvement of the microbiota. Thus, this study aimed to evaluate biogas production by industrial wastes and to use the biofertilizer for the bioremediation of soils previously contaminated with gasoline. The biomass (420 mL) generated approximately 10 liters (L) of methane and 3 L of other gases. Anaerobic incubation reduced total and volatile solids, as well as biochemical oxygen demand, chemical oxygen demand, and the carbon and nitrogen contents of the biomass. The bioremediation experiment showed that 15 days after contamination with gasoline, the addition of the biofertilizer improved the degradation efficiency of monoaromatic hydrocarbons; however, the degradation of polyaromatic hydrocarbons was less time efficient. So, we conclude that the anaerobic incubation of industrial wastes generates a high amount of biogas, and that biofertilizer deposition into contaminated soil does not affect the efficiency of the degradation of aromatic hydrocarbons after 30 days. Novelty or significance : Anaerobic incubation of industrial wastes generates a high calorific value gas, which can be used as an alternative source of energy. And, the resulting biomass, called biofertilizer, can be used to remediate soils contaminated with hydrocarbons.  相似文献   

2.
This paper investigates the suitability of Jerusalem artichoke (Helianthus tuberosus L.), fiber hemp (Cannabis sativa L.), energy sunflower (Helianthus annuus L.), Amur silver-grass (Miscanthus sacchariflorus), and energy grass cultivar (cv) Szarvasi-1 for biofuel production in Northern climatic conditions. Above ground biomass, bioethanol production yield, and methane production yield are used as indicators to assess the bio-energy potential of the culture. Results presented show that energy crops of Southern origin produce 30–70% less biomass than in the origin region. Nonetheless, both perennial and annual energy crops produce high above ground biomass yields (660–1280 g m–2) for Northern climatic conditions. Experimental results show that bioethanol yield is dependent on cellulose content of the biomass. The higher the cellulose content, the higher the bioethanol yield. The biogas production on the other hand, depends on lignin content. The lower the lignin content the higher the biogas yield. Therefore, the selection of the energy crop for bioethanol production should be based on high cellulose content, while for biogas production it should rather be based on the low lignin content.  相似文献   

3.
Hydrilla (Hydrilla verticillata) is one of the world’s most problematic invasive aquatic plants. Although management of hydrilla overgrowth has often been based on use of chemical herbicides, issues such as the emergence of herbicide-resistant hydrilla biotypes and the need for in situ nutrient remediation strategies have together raised interest in the use of harvester machines as an alternative management approach. Using a life cycle assessment (LCA) approach, we calculated a range of net energy and economic benefits associated with hydrilla harvests and the utilization of biomass for biogas and compost production. Base case scenarios that used moderate data assumptions showed net energy benefit ratios (NEBRs) of 1.54 for biogas production and 1.32 for compost production pathways. NEBRs for these respective pathways rose to 2.11 and 2.68 when labor was excluded as a fossil fuel input. Base case biogas and compost production scenarios respectively showed a monetary benefit cost ratio (BCR) of 1.79 and 1.83. Moreover, very high NEBRs (3.94 for biogas; 6.37 for compost) and BCRs (>11 for both biogas and compost) were found for optimistic scenarios in which waterways were assumed to have high hydrilla biomass density, high nutrient content in biomass, and high priority for nutrient remediation. Energy and economic returns were largely decoupled, with biogas and fertilizer providing the bulk of output energy, while nutrient remediation and herbicide avoidance dominated the economic output calculations. Based on these results, we conclude that hydrilla harvest is likely a suitable and cost-effective management program for many nutrient-impaired waters. Additional research is needed to determine how hydrilla harvesting programs may be most effectively implemented in conjunction with fish and wildlife enhancement objectives.  相似文献   

4.
Coal-based power generation is a principal source of electricity in India and many other countries. About 15–30% of the total amount of residue generated during coal combustion is fly ash (FA). FA is generally alkaline in nature and contains many toxic metals like Cr, Pb, Hg, As and Cd along with many essential elements like S, B, Ca, Na, Fe, Zn, Mn and P. Dumped FA contaminates the biosphere by mobilization of its fine particles and hazardous metals. Despite the negative environmental impact of FA, coal continues to be a major source of power production in India and therefore FA disposal is a major environmental issue. To overcome this problem, FA dumping sites have been started as a potential resource for biomass production of tree species. Phytoremediation is a strategy that uses plants to degrade, stabilize, and remove contaminants from soils, water and waste FA. Phytomanagement of FA is based on the plants' root systems, high biomass, woody nature, native nature, and resistance to pH, salinity, and toxic metals. Recently Indian researchers mostly from the National Botanical Research Institute have been working on phytoremediation and revegetation of FA dykes, inoculation of bacterial strains for reducing FA stress and biomass production from FA dykes. Many international researchers have worked on reclamation, revegetation and utilization of FA. FA utilization saves resources, mainly land (topsoil), water, coal, limestone and chemical fertilizer. Safe utilization of FA is a major concern around the world and regulatory bodies are enforcing stringent rules for the proper management of FA. This article summarizes various viable avenues in India for FA utilization and environmental management.  相似文献   

5.
This paper presents a study of the feasibility of utilising roadside vegetation for biogas production in Denmark. The potential biomass yield, methane yields, and the energy balances of using roadside grass for biogas production was investigated based on spatial analysis. The results show that the potential annual yield of biomass obtainable from roadside verges varies widely depending on the local conditions. The net energy gain (NEG) from harvest, collection, transport, storage and digestion of roadside vegetation was estimated to range from 60,126–121,476 GJ, corresponding to 1.5–3.0% of the present national energy production based on biogas. The estimated values for the energy return on invested energy (EROEI) was found to range from 2.17 to 2.88. The measured contents of heavy metals in the roadside vegetation was seen not to exceed the legislative levels for what can be applied as fertilizer on agricultural land, neither does it reach levels considered as inhibitory for the anaerobic fermentation process. From a practical point of view, few challenges were identified related to the acquisition and processing of the roadside vegetation. Considering the positive net energy gains, further energy investments for management of these challenges can be made. Despite the somewhat low EROEI values, the use of this resource could however result in other positive externalities, such as improved biodiversity of the verges and recycling of nutrients.  相似文献   

6.
This study was aimed at establishing the feasibility of microalgae biomass acquisition from waters of the Vistula Lagoon with the use of an installation operating in the fractional–technical scale, and at determining the effectiveness of biogas production from the acquired substrate. Depending on the technological solution of the concentration process, the degree of aquatic biomass hydration ranged from 99.6 to 97.90%. The quantity of biogas produced during methane fermentation fitted within the range of 243.9 to 395.2 dm3/kg d.m.. The values achieved were found to depend directly on the concentration of organic matter in the acquired water biomass and on system’s loading with a feedstock of organic compounds. The content of methane in a gaseous mixture ranged from 41.4 to 61.9%. The biomass produced was predominated by taxa belonging to Cyanoprokaryota, Bacillarophyceae, and Chlorophyta.  相似文献   

7.
Phytoextraction of toxic metals: a review of biological mechanisms   总被引:7,自引:0,他引:7  
Remediation of sites contaminated with toxic metals is particularly challenging. Unlike organic compounds, metals cannot be degraded, and the cleanup usually requires their removal. However, this energy-intensive approach can be prohibitively expensive. In addition, the metal removing process often employs stringent physicochemical agents which can dramatically inhibit soil fertility with subsequent negative impacts on the ecosystem. Phytoremediation has been proposed as a cost-effective, environmental-friendly alternative technology. A great deal of research indicates that plants have the genetic potential to remove many toxic metals from the soil. Despite this potential, phytoremediation is yet to become a commercially available technology. Progress in the field is hindered by a lack of understanding of complex interactions in the rhizosphere and plant-based mechanisms which allow metal translocation and accumulation in plants. In this paper, four research areas relevant to metal phytoextraction from contaminated soil are reviewed. The review concludes with an assessment of the current status of technology deployment and suggestions for future phytoremediation research.  相似文献   

8.
Bioenergy production from biomass is proposed as a method to solve part of the nation's energy problem. However, biomass and bioenergy production is questioned as an environment-friendly approach due to the potential increase of water pollution and the potential decrease of available water resource. A conceptual model of an integrated natural waste treatment system that produces biogas and biomass for bioenergy, treat waste and wastewater, conserve fresh water, and decrease the potential water pollution is presented. The potential biomass production from water hyacinth, duckweed, cattail, and knotgrass was investigated using recycling wastewater from an integrated natural waste treatment system from 2005 to 2008. Although the biomass production from recycling wastewater was not controlled for maximum production, this research identified the large potential impact that could be made if these systems were implemented. The overall average water hyacinth growth rate was high to 0.297 kg wet wt./m2/day during a research period of over 500 days, including both the active and non-active growing seasons. The average daily growth rates of duckweed, cattail, and knotgrass were 0.099-0.127, 0.015, and 0.018 kg wet wt./m2, respectively. This research illustrated that water hyacinth was a more promising aquatic plant biomass for bioenergy production when wastewater effluent was recycled as water and nutrient sources from an integrated natural waste treatment system.  相似文献   

9.
Phytoremediation offers an ecologically and economically attractive remediation technique for soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In addition to the choice of plant species, agronomic practices may affect the efficiency of PAH phytoremediation. Inorganic nutrient amendments may stimulate plant and microbial growth, and clipping aboveground biomass might stimulate root turnover, which has been associated with increases in soil microbial populations. To assess the influence of fertilization and clipping on PAH dissipation in a nutrient-poor, aged PAH-contaminated soil, a 14-mo phytoremediation study was conducted using perennial ryegrass (Lolium perenne) as a model species. Six soil treatments were performed in replicate: unplanted; unplanted and fertilized; planted; planted and fertilized; planted and clipped; and planted, clipped, and fertilized. Plant growth, soil PAH concentrations, and the concentrations of total and PAH-degrading microorganisms were measured after 7 and 14 mo. Overall, planting (with nearly 80% reduction in total PAHs) and planting + clipping (76% reduction in total PAHs) were the most effective treatments for increased PAH dissipation after 14 mo. Fertilization greatly stimulated plant and total microbial growth, but negatively affected PAH dissipation (29% reduction in total PAHs). Furthermore, unplanted and fertilized soils revealed a similar negative impact (25% reduction) on PAH dissipation after 14 mo. Clipping did not directly affect PAH dissipation, but when combined with fertilization (61% reduction in total PAHs), appeared to mitigate the negative impact of fertilization on PAH dissipation. Therefore, fertilization and clipping may be included in phytoremediation design strategies, as their combined effect stimulates plant growth while not affecting PAH dissipation.  相似文献   

10.
The term “phytoremediation” is used to describe the cleanup of heavy metals from contaminated sites by plants. This study demonstrates phytoremediation potential of Indian mustard (Brasicca juncea (L.) Czern. & Coss.) genotypes for chromium (Cr). Seedlings of 10 genotypes were grown hydroponically in artificially contaminated water over a range of environmentally relevant concentrations of Cr (VI), and the responses of genotypes in the presence of Cr, with reference to Cr accumulation, its phytotoxity and anti-oxidative system were investigated. The Cr accumulation potential varied largely among Indian mustard genotypes. At 100 μM Cr treatment, Pusa Jai Kisan accumulated the maximum amount of Cr (1680 μg Cr g−1 DW) whereas Vardhan accumulated the minimum (107 μg Cr g−1 DW). As the tolerance of metals is a key plant characteristic required for phytoremediation purpose, effects of various levels of Cr on biomass were evaluated as the gross effect. The extent of oxidative stress caused by Cr stress was measured as rate of lipid peroxidation. The level of thiobarbituric acid reactive substances (TBARS) was enhanced at all Cr treatments when compared to the control. Inductions of enzymatic and nonenzymatic antioxidants were monitored as metal-detoxifying responses. All the genotypes responded to Cr-induced oxidative stress by modulating nonenzymatic antioxidants [glutathione (GSH) and ascorbate (Asc)] and enzymatic antioxidants [superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)]. The level of induction, however, differed among the genotypes, being at its maximum in Pusa Jai Kisan and its minimum in Vardhan. Pusa Jai Kisan was grown under natural field conditions with various Cr treatments, and Cr-accumulation capacity was studied. The results confirmed that Pusa Jai Kisan is a hyperaccumulator of Cr and hypertolerant to Cr-induced stress, which makes this genotype a viable candidate for use in the development of phytoremediation technology of Cr-contaminated sites.  相似文献   

11.
土壤重金属污染的植物修复及超富集植物的研究进展   总被引:2,自引:0,他引:2  
土壤重金属污染的植物修复是污染整治的重要手段之一。近年来对植物修复的研究日益增加,工业、农业和交通是土壤中污染物的三大主要来源。目前重金属污染土壤植物修复主要包括植物稳定、植物提取和植物挥发。由于超富集植物存在生物量小、生长缓慢的缺点,更应该关注具有高生物量的重金属耐(抗)性植物。  相似文献   

12.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

13.
As opposed to mesophilic, thermophilic anaerobic digestion of food waste can increase the biogas output of reactors. To facilitate the transition of anaerobic digesters, this paper investigated the impact of adapting mesophilic sludge to thermophilic conditions. A 5L bench scale reactor was seeded with mesophilic granular sludge obtained from an up-flow anaerobic sludge blanket digester. After 13 days of operation at 35 degrees C, the reactor temperature was instantaneously increased to 55 degrees C and operated at this temperature until day 21. The biomass was then fed food waste on days 21, 42 and 63, each time with an F/M (Food/Microorganism) ratio increasing from 0.12 to 4.43 gVS/gVSS. Sludge samples were collected on days 0, 21, 42 and 63 to conduct substrate activity tests, and reactor biogas production was monitored during the full experimental period. The sludge collected on day 21 demonstrated that the abrupt temperature change had no pasteurization effect, but rather lead to a biomass with a fermentative activity of 3.58 g Glucose/gVSS/d and a methanogenic activity of 0.47 and 0.26 g Substrate/gVSS/d, related respectively, to acetoclastic and hydrogenophilic microorganisms. At 55 degrees C, an ultimate gas production (Go) and a biodegradation potential (Bo) of 0.2-1.4 L(STP)/gVS(fed) and of 0.1-0.84 L(STP) CH(4)/gVS(fed) were obtained, respectively. For the treatment of food waste, a fully adapted inoculum was developed by eliminating the initial time-consuming acclimatization stage from mesophilic to thermophilic conditions. The feeding stage was initiated within 20 days, but to increase the population of thermophilic methanogenic microorganisms, a substrate supply program must be carefully observed.  相似文献   

14.
土壤重金属污染现状与植物修复研究   总被引:1,自引:0,他引:1  
蒲晨新  余渊  孙大江 《四川环境》2014,33(5):140-145
概括了中国土壤重金属污染现状以及危害,总结了土壤重金属污染的植物修复类型和优缺点,超富集植物的研究进展重点阐述了植物对土壤重金属耐性和富集机制,以及超富集植物的种质资源,最后指出了植物修复未来的研究趋势。  相似文献   

15.
提高畜禽粪便沼气发酵产气量的研究进展   总被引:1,自引:0,他引:1  
随着畜禽养殖规模的不断扩大,合理处理畜禽粪便是目前刻不容缓的问题.目前,沼气发酵是解决畜禽养殖场粪污处理和资源化利用的主要方式之一,且通过提高畜禽粪便沼气发酵产气量可以实现将粪便变废为宝的目的和达到资源利用最大化效果.综述了畜禽粪便沼气发酵产气的内在影响因素和外在影响因素对产气量的影响,为提高畜禽粪便的利用率和沼气发酵...  相似文献   

16.
It is well known that dilute sulfuric acid pretreatment of the lignicellulosisc biomass is an effective approach used for the production of the ethanol. However, there are less studies on the biogas production from the pretreated lignocellulosics and hardly data available on the codigestion of cattle manure with the pretreated lignocellulosisc material. The aim of this study was to evaluate biomethane production potential of codigestion of cattle manure with dilute acid pretreated lignocellulosic biomass. Sugarcane bagasse and rice husk was pretreated with dilute sulfuric acid or phosphoric acid at 121°C for 20 minutes and subsequently subjected to anaerobic digestion alone or codigested with cattle manure.

The results showed that codigestion of 1% phosphoric acid pretreated rice husk with cattle manure led to the highest methane production of 115 Nmlg?1VS while monodigestion of cattle manure and phosphoric acid pretreated rice husk produced 98 and 87 Nmlg?1VS, respectively. An inhibition was observed in anaerobic digestion of sulfuric acid pretreated rice husk and sugarcane bagasse during monodigestion and codigestion with cattle manure.

The study concludes that dilute phosphoric acid pretreated lignocellulosics like sugarcane bagasse and rice husk can be used as a cosubstrate with cattle manure in anaerobic digestion for enhanced methane production. Dilute sulfuric acid pretreatment, which is effective method for the bioethanol production, causes inhibition during anaerobic digestion of the pretreated lignocellulosics.  相似文献   

17.
Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.  相似文献   

18.
For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective prevention of leaching, breeding of new plant material, and use of the contaminated biomass (e.g., as biofuels) will be crucial for the acceptance and the economic breakthrough of enhanced phytoextraction.  相似文献   

19.
Summary Quantitative studies on the biomethanation processes using a different biomass (goat dung, cow dung, buffalo dung, piggery waste, poultry waste and sewage) alone or in combination have been made. The dung samples have been found to be an efficient producer of biogas at a 1:2 dilution. Better yields of biogas are obtained in combination with other biomasses rather than when used alone. Judicious mixing of biomasses, however, is important. Competitive biomethanation of a biomass by other biomasses as a source for a wild population of microbes has been studied in vials using a cross-inoculation technique, i.e. using inoculum of one biomass on different sterile biomasses. The results show that the microbes are very specific and usually non-adaptive. Each inoculum outclasses others in using its natural biomass for methanation but reacts poorly when inoculated to other alien biomasses. Buffalo dung is to some extent adaptive in nature.Professor S.C. Lahiri is the senior author of this paper and he is ex-Head of the Department of Chemistry at the University of Kalyani where Nilanjan Chakravorty is a research fellow. Dr G.M. Sarkar is a senior lecturer in the Department of Botany at Ranaghat College, Ranaghat, Nadia, West Bengal, India.  相似文献   

20.
This work presents a short review of adsorptive materials proposed and tested for removing phthalates from an aqueous environment. The objective is not to present an exhaustive review of all the types of adsorbents used, but to focus on selected types of "innovative" materials. Examples include modified activated carbon, chitosan and its modifications, β-cyclodextrin, and specific types of biomass, such as activated sludge from a wastewater treatment plant, seaweed and microbial cultures. Data from the literature do not confirm the existence of a broad-spectral adsorbent with high sorption efficiency, low production costs and environmentally friendly manufacture. According to the coefficients of Freundlich's isotherm, the most promising adsorbent of those mentioned in this work appears to be the biomass of activated sludge, or extracellular polysaccharides extracted from it. This material benefits from steady production, is cheap and readily available. Nevertheless, before putting it in practice, the treatment and adaptation of this raw material has to be taken into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号