首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing demand of renewable energy sources has pressed the need to search for biofuels. The world is not only thrusting for potential sources of biofuels but also surveilling not to hamper the food supply, particularly in the Third World countries, such as Bangladesh. Rice bran oil is a prominent source of biofuels. Rice, the main cereal in Bangladesh, is cultivated all the year round. Rice hull containing bran is mostly wasted and merely used as feedstock for cattle and for cooking purposes. This study considered rice bran as a prospective source of biodiesel in Bangladesh. The properties of oil collected from rice bran were investigated to ensure the production of biodiesel by transesterification. An economic analysis relative to Bangladesh was conducted, and the production rate of biodiesel under different percentage of catalyst was investigated.  相似文献   

2.
Nowadays, biodiesel is used as one of the alternative renewable energy due to the increasing energy demand. However, optimum production of biodiesel still requires a huge number of expensive and time-consuming laboratory tests. To address the problem, this research develops a novel Genetic Algorithm-based Evolutionary Support Vector Machine (GA-ESIM). The GA-ESIM is an Artificial Intelligence (AI)-based tool that combines K-means Chaotic Genetic Algorithm (KCGA) and Evolutionary Support Vector Machine Inference Model (ESIM). The ESIM is utilized as a supervised learning technique to establish a highly accurate prediction model between the input--output of biodiesel mixture properties; and the KCGA is used to perform the simulation to obtain the optimum mixture properties based on the prediction model. A real biodiesel experimental data is provided to validate the GA-ESIM performance. Our simulation results demonstrate that the GA-ESIM establishes a prediction model with better accuracy than other AI-based tool and thus obtains the mixture properties with the biodiesel yield of 99.9%, higher than the best experimental data record, 97.4%.  相似文献   

3.
Continuous flow transesterification of waste frying oil (WFO) with methanol for the biodiesel production was tested in a laboratory scale jacketed reactive distillation (RD) unit packed with clam shell based CaO as solid catalyst. The physiochemical properties of the clam shell catalysts were characterized by X-ray Diffraction (XRD), Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy (SEM), and Energy Dispersive Atomic X-ray Spectrometry (EDAX). The effects of the reactant flow rate, methanol-to-oil ratio, and catalyst bed height were studied to obtain the maximum methyl ester conversion. Reboiler temperature of 65°C was maintained throughout the process for product purification and the system reached the steady state at 7 hr. The experimental results revealed that the jacketed RD system packed with clam shell based CaO showed high catalytic activity for continuous production of biodiesel and a maximum methyl ester conversion of 94.41% was obtained at a reactant flow rate of 0.2 mL/min, methanol/oil ratio of 6:1, and catalyst bed height of 180 mm.  相似文献   

4.
The possibility of application of black liquor for oil-riched algae cultivation is inspected. The results show that after ligin removal and enzymatic hydrolysis, the hydrolysate of black liquor contained 9.18 g L?1 of reducing sugar. When the hydrolysate was used for Scenedesmus obliquus (S. obliquus) cultivation, a 1.23 g L?1, 24.52%, and 23.20 mg L?1d?1 was obtained for growth yield, oil content, and the lipid productivity, seperately. The hemicellulose was extracted from black liquor and hydrolyzed. With addition of 3 g L?1 yeast extract, the growth yield of S. obliquus in hemicellulose hydrolysate increased to 2.7 g L?1, an increase of 26.8% than that of in glucose medium, oil content was 25.7% and the final lipid productivity reached 53.37 mg L?1d?1. The results indicate that black liquor can not be directly used by microalgae, but with approprate treatment, the carbohydrate of it could be recovered and uitilized for the oil production from microalgae.  相似文献   

5.
In this study, a non-edible seed oil of Alexandrian Laurel (Calophyllum inophyllum L.) with higher free fatty acid content has been harnessed to produce biodiesel by transesterification process. The 20.2% free fatty acid (FFA) content was first reduced to 12.9% by using TOP degumming process. Ortho-phosphoric acid was used to esterify the refined kernel oil. Transesterification reaction was performed with NaOH as an alkaline catalyst and methanol as an analytical solvent. The effects of methanol to oil molar ratio (MR), catalyst concentration (CC), reaction temperature (TP), reaction time (TM), and stirrer speed (SS) on biodiesel conversion were studied to optimize the transesterification conditions using DOE- approach. The experimental study revealed that 9:1 MR, 0.8 wt.% CC, 60°C TP, 75 min TM and 1000 rpm SS were the optimal process control variables. The study indicated that CC was the most important control parameter in optimal methyl ester production. The optimal treatment combination yielded 97.14% of biodiesel. The profile of biodiesel was determined using gas chromatography-mass spectrometry. 1H NMR spectrum of Calophyllum inophyllum methyl ester (CIME) has been reported. The properties of the biodiesel have been found within specifications of the ASTM D6751 and EN 14214 standards and hence could be considered as a suitable alternative to diesel fuel for sustainable circulation of carbon.  相似文献   

6.
In this research study, biodiesel has been successfully produced from vegetable seed oil of an indigenous plant Salvadora persica L. that meets the international biodiesel standard (ASTM D6751). The biodiesel yield was 1.57 g/5 g (31.4% by weight) and the in-situ transesterification ester content conversion was 97.7%. The produced biodiesel density was 0.894 g/mL, its kinematic viscosity 5.51 mm2/s, HHV 35.26 MJ/kg, flash point 210°C, cetane no. 61, and sulfur content 0.0844%. Thermal analysis of the biodiesel showed that 97% weight loss was achieved at 595°C with total oxidation of the biodiesel. The production energy efficiency was 0.46% with a lab scale setup, assuming the volume fraction ratio (volume of the sample/total volume of the equipment used). The results revealed that single-step in-situ transesterification method is suitable for the production of biodiesel from S. persica seed oil.  相似文献   

7.
This paper describes the conceptual design of a production process in which waste cooking oil is converted via supercritical transesterification with methanol to methyl esters (biodiesel).Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great advantage to eliminate the pre-treatment capital and operating cost.A supercritical transesterification process for biodiesel continuous production from waste cooking oil has been studied for three plant capacities (125,000; 80,000 and 8000 tonnes biodiesel/year). It can be concluded that biodiesel by supercritical transesterification can be scaled up resulting high purity of methyl esters (99.8%) and almost pure glycerol (96.4%) attained as by-product.The economic assessment of the biodiesel plant shows that biodiesel can be sold at US$ 0.17/l (125,000 tonnes/year), US$ 0.24/l (80,000 tonnes/year) and US$ 0.52/l for the smallest capacity (8000 tonnes/year).The sensitive key factors for the economic feasibility of the plant are: raw material price, plant capacity, glycerol price and capital cost.Overall conclusion is that the process can compete with the existing alkali and acid catalyzed processes.Especially for the conversion of waste cooking oil to biodiesel, the supercritical process is an interesting technical and economical alternative.  相似文献   

8.
An environmentally benign, simple, and efficient process has been developed for biodiesel production from waste olive oil in the presence of a catalytic amount of TiO2 nanoparticles at 120°C with a conversion of 91.2% within 4 h. The present method affords nontoxic and noncorrosive medium, high yield of biodiesel, clean reaction, and simple experimental and isolation procedures. The catalyst can be recycled by simple filtration and reused without any significant reduction in its activity.  相似文献   

9.
This article focuses on the optimization of the production of fatty acid ethyl esters from soybean oil using CaO-based heterogeneous catalysts. Three different catalytic promoters were evaluated: Magnesium, zinc, and potassium. The reaction has evaluated the promoter content (promoter to calcium molar ratio), catalyst load, alcohol to oil molar ratio, and temperature. Response surface methodology (RSM) was used to evaluate the influence of each variable on the yield of biodiesel. The addition of K2O or MgO in the catalyst has enhanced the yield in fatty acid ethyl esters, while the use of ZnO as a promoter was not successful.  相似文献   

10.
Influence of catalyst calcination temperature on the catalyst characteristics and catalytic transesterification of Jatropha curcas oil for biodiesel production was studied by using sodium zirconate (Na2ZrO3) solid base catalyst. Na2ZrO3 catalysts were prepared by impregnation method followed by calcination at temperatures of 700, 800, and 900°C. The prepared catalysts were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. Important parameters influencing the catalytic activity and fatty acid methyl ester yield were investigated. It was found that the increase in calcination temperature showed marked increase in activity due to the increased porosity and presence of tetragonal zirconia. Investigation of the reusability of the catalysts showed that the catalytic activity was retained even after five cycles of reaction.  相似文献   

11.
Waste cooking oil is a potential substitution of refined vegetable oil for the production of biodiesel due to the low cost of raw material and for solving their disposal problem. In this study, optimization of esterification process of free fatty acids in artificially acidified soybean oil with oleic acid has been carried out using methanol as an agent and ion exchange resin as a heterogeneous catalyst. The esterification reaction has been investigated based on the mass balance of the developed model. The model has been validated against experimental data and effects of temperature and catalyst weight have been analyzed. Thereafter, optimization process has been fulfilled for two different objective functions as conversion of acid oil and benefit. Optimization results indicated that the maximum conversion of acid is 95.95%, which is achievable at 4.48-g catalyst loading and reaction temperature of 120°C. Maximum benefit was obtained as US$0.057 per batch of reaction at a catalyst amount of 1 g and temperature of 120°C.  相似文献   

12.
In this paper, conventional response surface methodology (RSM) based on low-order polynomials and an alternative Kriging-based method are used for the model-based single and multi-objective optimization of fatty-acid methyl ester (FAME) production catalyzed by a novel crude lipase from the yeast Cryptococcus diffluens (D44). The coefficient of determination for the two modeling approaches was calculated as 0.97 for the Kriging method, and 0.86 for RSM; showing a more reliable representation of experimental data by Kriging. Both models were used to perform single (maximizing FAME titer and temporal productivity separately) and multi-objective (maximizing FAME titer and temporal productivity simultaneously) optimizations of four important operating conditions (reaction time and temperature; amount of crude enzyme; and volume of methanol used). In all cases, the highest temperature considered (60°C) gave the best results. A reduction of reaction time in half was seen to be necessary to achieve optimum productivity compared to titer, when the two objectives were considered separately. The observed trade-off between the two objectives was quantified via multi-objective optimization using Pareto-front analysis.  相似文献   

13.
利用工艺设备先进、自动化程度高、管理良好、生产规模在同行业中位居全国前列的新疆中泰化学华泰重化工有限责任公司聚氯乙烯树脂(PVC)生产线的清洁生产审核及后评估,通过对其生产工艺、物耗能耗、浪费环节等多方面的分析,挖掘其清洁生产潜力,并通过Vmbeao软件分析其清洁生活水平,为同类企业的清洁生产审核提供借鉴实例,并总结出具有推广价值的清洁生产技术.  相似文献   

14.
Although many aspects of environmental accounting methodologies in food production have already been investigated, the application of environmental indicators in the fruit sector is still rare and no consensus can be found on the preferred method. On the contrary, widely diverging approaches have been taken to several aspects of the analyses, such as data collection, handling of scaling issues, and goal and scope definition. This paper reviews studies assessing the sustainability or environmental impacts of fruit production under different conditions and identifies aspects of fruit production that are of environmental importance. Four environmental assessment methods which may be applied to assess fruit production systems are evaluated, namely Life Cycle Assessment, Ecological Footprint Analysis, Emergy Analysis and Energy Balance. In the 22 peer-reviewed journal articles and two conference articles applying one of these methods in the fruit sector that were included in this review, a total of 26 applications of environmental impact assessment methods are described. These applications differ concerning e.g. overall objective, set of environmental issues considered, definition of system boundaries and calculation algorithms. Due to the relatively high variability in study cases and approaches, it was not possible to identify any one method as being better than the others. However, remarks on methodologies and suggestions for standardisation are given and the environmental burdens of fruit systems are highlighted.  相似文献   

15.
Our paper explores the effect of economic performance variables on the carbon intensity of human well-being (CIWB) for 13 countries in the Middle East and North Africa (MENA) region over the period (1995–2013). We use a time-series cross-sectional Prais–Winsten regression model with panel-corrected standard errors (PCSEs). We find that economic performance has a statistically significant positive influence on CIWB over the period in question; thus, economic performance harms the environment, but the final effect deviates to a constant level after a while. This finding is not encouraging from the economic sustainability point of view. On the contrary, we find that total health expenditure has a statistically significant negative impact on CIWB by increasing life expectancy, which means less stress on the environment.  相似文献   

16.
This paper presents a Data Envelopment Analysis (DEA) model combined with bootstrapping to assess performance in mining operations. Since DEA-type indicators based on nonparametric production analysis are simply point estimates without any standard error, we provide a methodology to assess the performance of strip mining operations by means of a DEA bootstrapping approach. This methodology is applied to a sample of fifteen Illinois strip coal mines using publicly available data (Thompson et al., 1995). The applied approach uses a mixed mine environmental performance indicator (MMEPI) that is derived by means of a VRS DEA environmental technology treating overburden as an undesirable output under the weak disposability assumption, and we compare this measure with a traditional output-oriented mine performance indicator (MPI) omitting overburden. Although omitting undesirable output results in biased performance estimates, these findings are based on sample specific results and indicate this bias is not statistically significant. The confidence intervals derived by the bootstrapping of the proposed MMEPI point estimates indicate that significant inefficiency has taken place in the analyzed sample of Illinois strip mines.  相似文献   

17.
India is one of the most populous countries and is the third largest greenhouse gas–emitting nation. Energy security is a serious issue for India as it relies heavily on fossil fuel imports. Biodiesel production using microalgae as feedstock can address both of these issues. In this study, the technical feasibility of microalgae‐based biodiesel production is carried out for a coal thermal power plant (i.e., Budge Budge Thermal Station) in the state of West Bengal, India, using a generic methodology. An oleaginous microalgae species that is tolerant toward flue gas was identified (i.e., Nannochloropsis sp). A 75‐acre open raceway microalgae production plant was designed keeping the costs, energy demand, and CO2 emissions low. The open raceway pond can use 38 tons of CO2, produce 19 tons of algal biomass, and treat 9320 m3 of wastewater per acre annually.  相似文献   

18.
This paper presents a study of the feasibility of utilising roadside vegetation for biogas production in Denmark. The potential biomass yield, methane yields, and the energy balances of using roadside grass for biogas production was investigated based on spatial analysis. The results show that the potential annual yield of biomass obtainable from roadside verges varies widely depending on the local conditions. The net energy gain (NEG) from harvest, collection, transport, storage and digestion of roadside vegetation was estimated to range from 60,126–121,476 GJ, corresponding to 1.5–3.0% of the present national energy production based on biogas. The estimated values for the energy return on invested energy (EROEI) was found to range from 2.17 to 2.88. The measured contents of heavy metals in the roadside vegetation was seen not to exceed the legislative levels for what can be applied as fertilizer on agricultural land, neither does it reach levels considered as inhibitory for the anaerobic fermentation process. From a practical point of view, few challenges were identified related to the acquisition and processing of the roadside vegetation. Considering the positive net energy gains, further energy investments for management of these challenges can be made. Despite the somewhat low EROEI values, the use of this resource could however result in other positive externalities, such as improved biodiversity of the verges and recycling of nutrients.  相似文献   

19.
Integrated water resource management (IWRM) requires accounting for many interrelated facets of water systems, water uses and stakeholders, and water management activities. The consequence is that project analysis must account for the nonseparability among the component parts of IWRM plans. This article presents a benefit‐cost (B‐C) analysis of a set of projects included in the Yakima Basin Integrated Plan proposed for the Yakima Basin in south‐central Washington State. The analysis accounts for interdependence among proposed water storage projects and between water storage and water market development in the context of historical and more adverse projected future climate scenarios. Focusing on irrigation benefits from storage, we show that the value of a given proposed storage project is lower when other proposed storage projects in the basin are implemented, and when water markets are functioning effectively. We find that none of the water storage projects satisfy a B‐C criterion, and that assuring proposed instream flow augmentation is less expensive by purchasing senior diversion rights than relying on new storage to provide it.  相似文献   

20.
With China's rapid economic development, environmental problems have become more and more serious. Particulate air pollution is terrible in cities with large and dense population. It may lead to adverse health effects and economic costs. In this study, we calculated the health effects of pollution caused by particulate matter with aerodynamic diameters less than 10mum (PM(10)) in 111 Chinese cities in 2004 according to statistical data and epidemiological exposure-response functions. Using economic burden of disease analysis, an economic assessment of these health risks was also presented. In contrast to many previous studies that have examined individual cities, this study covered most large and medium-sized cities in China, which accounted for more than 70% gross domestic product (GDP) of China in 2004. The total economic cost caused by PM(10) pollution was estimated as approximately US$ 29,178.7 million. Mega cities such as Beijing, Shanghai, and Tianjin contribute relatively more to the total costs. The results will help policy makers in formulating more effective countermeasures and increasing public awareness to enhance environmental protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号