共查询到20条相似文献,搜索用时 156 毫秒
1.
An organic Rankine cycle (ORC) is generally used for converting low-grade heat into electricity. In this study, an extensive literature survey was conducted to identify current research gaps on experimental ORC systems. Specifically, there is limited experimental data and limited details on thermal and expander efficiencies of ORC systems. In order to address these gaps, the objective of this study included developing a turbine ORC with a power output exceeding 50 kW and thermal efficiency exceeding 8% for a heat source temperature < 120°C. The experimental results indicated that the system achieved a net power output of 242.5 kW and a thermal efficiency of 8.3% (the highest value for a turbine ORC system for the heat source temperature below 120°C). Thus, the study addressed the gaps identified in the research area of ORCs. 相似文献
2.
Chi-Yuan Lee Fang-Bor Weng Ten-Lom Chen Fan-Hsuan Liu 《International Journal of Green Energy》2016,13(6):624-629
This study developed an integrated (flow, voltage, and temperature) micro sensor using the micro-electro-mechanical systems (MEMS) technology. It was inserted into the high temperature proton exchange membrane fuel cell (HT-PEMFC) for local real-time measurement. The integrated micro sensor is made of 40 µm thick stainless steel base material, and its protective layer is formed by polyimide (PI) that has better temperature resistance. The integrated micro sensor has three functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and being able to be put in any place for measurement. After calibration, and its reliability confirmed, the integrated micro sensor is inserted into the HT-PEMFC for local microcosmic measurement. 相似文献
3.
Mingzhang Pan Xianpan Meng Chao Li Jinyang Liao Chengjie Pan 《International Journal of Green Energy》2020,17(11):603-616
ABSTRACT In this study, a proton exchange membrane (PEM) fuel cell stack composed of five cells in series is numerically investigated to study the impact of the nonuniform reactant flow rate on the performance of the stack. A comparison of the water concentration, temperature, reaction heat source, and current density of change rule of two groups of fuel cell stacks with uniform and nonuniform reactant flow rate reveals the performance degradation mechanism caused by nonuniform reactant flow. The results indicate that while operating under low-voltage conditions, the nonuniform reactant flow rate will cause the accumulation of excess liquid water near the PEM that is near the cathode exhaust outlet, and the local area reacts strongly on the catalyst, whereas the local area reacts slowly. When the average voltage of the stack is 0.55 V, the current density under the nonuniform reactant flow rate condition is 12.9% lower than that of the uniform reactant flow rate condition. In the case of uniform and nonuniform reactant flow rate at low current densities, the performance difference is not evident, but it is expected to be pronounced with the increase in current density. The simulation results are compared with the experimental data reported in the literature through a polarization curve, and they turn out to be well correlated with the experimental results. 相似文献
4.
Naveen K. Shrivastava Shashikant B. Thombre Kailas L. Wasewar 《International Journal of Green Energy》2016,13(2):213-228
In order to understand the complex transport phenomena in a passive direct methanol fuel cell (DMFC), a theoretical model is essential. The analytical model provides a computationally efficient framework with a clear physical meaning. For this, a non-isothermal, analytical model for the passive DMFC has been developed in this study. The model considers the coupled heat and mass transport along with electrochemical reactions. The model is successfully validated with the experimental data. The model accurately describes the various species transport phenomena including methanol crossover and water crossover, heat transport phenomena, and efficiencies related to the passive DMFC. It suggests that the maximum real efficiency can be achieved by running the cell at low methanol feed concentration and moderate current density. The model also accurately predicts the effect of various operating and geometrical parameters on the cell performance such as methanol feed concentration, surrounding temperature, and polymer electrolyte membrane thickness. The model predictions are in accordance with the findings of the other researchers. The model is rapidly implementable and can be used in real-time simulation and control of the passive DMFC. This comprehensive model can be used for diagnostic purpose as well. 相似文献
5.
This paper presents a theoretical comparison between fuel cell (FC) power train and conventional petrol driven propulsion system. FC has potential to reduce the CO2-emissions from road. However, FC power trains require energy storing device, to meet the peak power during extreme drive situations and also able to recover the kinetic energy of the vehicle during break operation. The proposed system includes a polymer electrolyte membrane fuel cell (PEMFC) based drive train and a super capacitor connected in parallel. The system is designed and dimensioned for a conventional petrol driven propulsion system of the Mercedes B-Class160. The feasibility study also includes comparison between the existing conventional systems. It is shown that although FC power train is heavier compared to existing system, urban performance is better and produces no CO2 and other harmful emissions. 相似文献
6.
Rachnarin Nitisoravut Cao N. D. Thanh Roshan Regmi 《International Journal of Green Energy》2017,14(8):712-723
There is an increasing trend to conduct the researches related to Microbial Fuel Cells (MFCs) in the recent years. Limited power output has been the major obstacle for the practical application and upscaling of MFCs. Attempts have been made on electrode modifications such as anode treatments, cathode modifications with catalysts and bio cathodes developments to produce varying degrees of improved output current depending upon the types of modifications. Power density and Coulombic efficiency have been considered as the important parameters to analyze the system performances. This paper overviews on the advances made in MFCs’ researches focusing on different types of electrodes modifications along with the involved methodology. Furthermore, the system performances of different modified MFCs are compared in terms of the power density and the Coulombic efficiency. 相似文献
7.
Yao-Cheng Lee Yung-Chin Yang Wen-Tong Chong 《International Journal of Green Energy》2016,13(14):1501-1506
Microbial fuel cells (MFCs) are one of the bioreactors that produce electrons by metabolizing substrate from microorganisms, and have the ability to both degrade waste solution and produce electrons. Recently, the activity of microorganisms has limited the power performance of MFCs. Chaos has been used to stimulate activity of microorganisms, but it has not been used previously in MFCs. In this study, three types of acclimations – native acclimation (NA), MFC acclimation (MFCA), and MFC embedded with chaotic electric field acclimation (CMFCA) – are applied to realize their performance and chemical oxygen demand (COD) removal in MFCs, respectively. Results show that the current density and the power density of CMFCA were improved by 1.33 and 1.25 times than MFCA, and the COD removal of CMFCA reached 85% after five days. In addition, the acclimation stage at the condition of CMFCA appeared after 10 days, but was not found for the MFCA system. These observations would provide positive information for improving the performance of MCFs in the future. 相似文献
8.
Ahmed I. El-Seesy Mohamed Nour Ali M. A. Attia Hamdy Hassan 《International Journal of Green Energy》2020,17(3):233-253
ABSTRACTThis article aims to study the influence of the addition of graphene oxide nanoparticles (GO) to diesel/higher alcohols blends on the combustion, emission, and exergy parameters of a CI engine under various engine loads. The higher alcohols mainly n-butanol, n-heptanol, and n-octanol are blended with diesel at a volume fraction of 50%. Then, the 25 and 50 mg/L concentrations of GO are dispersed into diesel/higher alcohols blends using an ultrasonicator. The GO structures are examined using TEM, TGA, XRD and FTIR. The findings show that there is a reduction in pmax. and HRR when adding higher alcohols with diesel fuel. Regarding engine emission, there is a significant improvement in emissions formation with adding higher alcohols. The addition of GO into diesel/higher alcohols blends improves the brake thermal efficiency by 15%. Moreover, the pmax. and HRR are both enhanced by 4%. The CO, UHC and smoke formation are reduced considerably by 40%, 50 and 20%, respectively, while NOx level is increased by 30% with adding GO. Finally, adding high percentages of n-butanol, n-heptanol, and n-octanol with diesel fuel with the presence of GO has the potential to achieve ultra-low CO, UHC, and smoke formation meanwhile keeping high thermal efficiency level. 相似文献
9.
Maria Grazia Gnoni Gianni Mummolo Luigi Ranieri 《Journal of Environmental Planning and Management》2008,51(6):833-845
In this paper, the authors propose a mixed integer linear programming model for designing an Integrated Solid Waste Management System (ISWMS) to meet specific economic goals. The model refers to a set of municipalities, known as ‘local basin’, which have to share a common waste management system. At the municipal level the model allows for an identification of the optimal collection service option; at the local basin level, the model provides the optimal waste flow appropriate to the collection service option of each municipality. The model has been applied to a full-scale case study of an area located in southeast Italy. A scenario analysis was carried out to investigate alternative municipal solid waste management options, which fundamentally differ in the organic flow mass rate to be either collected and composted or landfilled. Findings show that an increase in the cost of landfilling determines the optimal collection scenario and the configuration plants tend to recover higher rates of organics in separate collection and thus higher refuse derived fuel productions. The results obtained validate the application of the model in both the strategic planning and operational phases, by supporting public administrators at both municipality and local basin level in decision making and evaluation of technical and economic performances of ISWMSs. 相似文献
10.
Qian Xu Weiqi Zhang Jian Zhao Lei Xing Qiang Ma Li Xu 《International Journal of Green Energy》2018,15(3):181-188
Unlike the situation in the direct methanol fuel cell (DMFC) fed with dilute liquid methanol solution, the required water in anode for a DMFC fed with neat methanol is entirely transported from cathode. In this study, the water concentration in anode catalyst layer of such a DMFC operating with fully active mode is theoretically analyzed, followed by the experimental investigations on the effects of air flow rate and operating temperature on cell performance. The results revealed that the air flow rate has a strong impact on cell performance, especially at larger current density. Overmuch air causes rapid decline of cell performance, which results from the dehydration of membrane and lack of water in the anode reaction sites. Raising temperature induces faster reaction kinetics, while undesired stronger water dissipation from the DMFC. In practice, the stable cell resistance can be used as a criterion to help the DMFC to achieve a high and sustainable performance by finely combining the air flow rate and operating temperature. 相似文献
11.
Wang Chin Tsan Chen Wei Jung Huang Ruei Yao 《International Journal of Green Energy》2016,13(7):695-702
The microbial fuel cell uses the microorganism biochemistry to carry on the energy conversion. Concerning the experimental precision, the colony culture would be replaced by a fixed amount of liquid culture for Microbial fuel cell of Escherichia coli. The anode and cathode chambers whose each volume is 100 mL were utilized, the effective surface area of proton exchange membrane Nafion-117 is about 9 cm2. In addition, the electrode area of carbon cloth is 20 cm2. Three kinds of Escherichia coli, named as BCRC No. 10322, 10675 and 51534, respectively, would be selected. Results show that the electricity performance of Escherichia coli of BCRC No.51534 is better than the other microorganism studied because of having a larger open circuit voltage of 1.01 V and limiting current 22 mA, the maximum power density of 1342 mW/m2, and average working power density of 295 mW/m2 would be produced. These results would be useful to improve the performance of microbial fuel cell. 相似文献
12.
Deploying heating technologies, such as air-source heat pumps (ASHPs), can respond to the dual challenges of tackling fuel poverty and reducing carbon emissions from domestic energy consumption. In the UK, ASHP performance has been found to be below design levels. Elements of three strands of literature – innovation diffusion, environmental psychology and neighbourhood effects – are combined to gain insights into why the adoption and performance of ASHPs are lagging policy targets and design potential. Evidence from users, installers and area-based scheme facilitators suggests that the perceived complexity of the technology is a barrier. The level of technology maturity and the typical profile of the elderly fuel poor do not match; the target group might prefer to be late adopters or laggards in adopting technology. The role of installers is critical as the disruption from installation is a barrier to adoption and ASHPs place demands on users to change existing practices. 相似文献
13.
Yahya Ulusoy Rıdvan Arslan Cafer Kaplan Alper Bolat Haşmet Cedden Alper Kaya 《International Journal of Green Energy》2016,13(1):40-48
Waste cooking oil (WCO) was experimentally examined to determine whether it can be used as an alternative fuel in a 3-cylinder, 4-stroke, direct injection, 48 kW power tractor engine. The test engine was operated under full load conditions using diesel fuel and waste vegetable oil from the 2400 to 1100 rpm and performance values were recorded. Tests were performed in two stages to evaluate the effect of the waste oils on the engine life cycle. When the test engine was operated with diesel fuel and waste cooking oil; engine torque decreased between at ratio of 0.09 % and 3% according to the engine speed. While no significant difference occurs in the diesel fuel tests at the end of 100 hours of operation, an important reduction was observed in the engine torque of the WCO engine between 4.21% and 14.48% according to the engine speed, and an increase in average smoke opacity ratio was also observed. In accordance with the results obtained from the studies, it was determined that the engine performance values of waste cooking oil show similar properties with diesel fuel, but in long-term usage, performance losses increased. In the SEM analysis performed on the fuel system, there were dark deposits at the nozzle tip and stem. According to an EDX analysis at the nozzle tips, the detected elements point to engine oil ash in the combustion chamber and show coking products (C and O). The other elements (Na, S, Ca, P, Cl, and K) point to used WCO. 相似文献
14.
Surajbhan Sevda Xochitl Dominguez-Benetton Florian H. M. Graichen Karolien Vanbroekhoven Heleen De Wever T. R. Sreekrishnan 《International Journal of Green Energy》2016,13(1):71-79
Microbial fuel cells (MFCs) which are operated in continuous mode are more suitable for practical applications than fed batch ones. The aim of the present study was to characterize an air-cathode MFC operating in continuous mode and to determine the intrinsic properties for suitable performance and scalability. Air-cathode MFCs were constructed from plexiglass with a total working volume of 220 mL. Zirfon® separator used in this MFC had cross section area of 100 cm2. The air cathode MFCs were operated in fed-batch mode and then shifted to the continuous mode. To determine the behavior of anode and cathode in long term operation (274 days), their contribution in MFC performance was evaluated over time. Once the active biofilm was formed, power production and substrate consumption rate were significantly higher. The internal resistance increased with the passage of time. After stabilization of biofilm when the MFC was placed in close circuit by connecting an external resistance, the anode-reference and cathode-reference electrode behavior showed that anode potential is near to the bacterial cell inside potential. The maximum open circuit voltage achieved was 623 mV and the highest power and volumetric power density were 38.03 mW/m2 and 1296 mW/m3, respectively. 相似文献
15.
Liquid water management is still a critical issue in the improvement of proton exchange membrane fuel cell (PEMFC) performance. In this work, for the first time, the liquid water behavior and transport inside the cathode of a PEMFC with a stirred tank reactor (STR) design, rather than the conventional PEMFC flow channel design, are numerically studied. The dynamic contact angle (DCA) is applied to multiple wall boundaries in the numerical model through a user-defined-function (UDF) code, i.e., STR-DCA model. Another numerical model with the static contact angle (SCA) and same operating conditions, i.e., STR-SCA model, is also developed for comparison. The volume of fluid (VOF) method is employed in the simulation to track the gas-liquid interface. The results show that the liquid water distribution and transport are significantly different between these two models, indicating the remarkable effects of DCA on the simulation results. It is also verified the capability of STR-PEMFC to reduce the liquid water flooding, showing the potential of this channel-less type fuel cell in the further development. 相似文献
16.
Wen-Chey Chang Albert Ying-Je Huang Tsai-Yi Chen 《International Journal of Green Energy》2016,13(15):1608-1614
Safe and reliable metal hydride canisters (MHCs) for the use of hydrogen storage at low pressure can be applied to supply small fuel cell vehicles or scooters with hydrogen fuel. However, greater cost-effectiveness of hydrogen gas is obviously necessary to the successful promotion of hydrogen fuel cell scooters in the market. In this study, we use the net present value (NPV) method to evaluate the feasibility of an investment project on the supply of purified hydrogen in a pulp company at Hualien, Taiwan. The purified hydrogen can be separated from waste hydrogen by using pressure swing adsorption (PSA) technology and then be stored in MHCs. Under some assumptions of improved parameters about hydrogen production cost and hydrogen gas price, the discounted payback period of hydrogen purification and storage project in our study can be less than 10 years and the unit cost of hydrogen gas can be close to the price of gasoline. Moreover, the unit cost of hydrogen gas in our study can be lower than the cost from other sources of hydrogen. 相似文献
17.
Chengyuan Gong Yi Yu Kaiqiang Wang Zhengkai Tu 《International Journal of Green Energy》2020,17(10):591-601
ABSTRACT In this study, a three-dimension (3D) computational model was proposed to investigate the flow and heat transfer characteristics of the intake grilles of two different fuel cell vehicles. The models of the intake grilles were constructed according to the actual sizes of two vehicles, namely, Roewe 950 and Toyota Mirai, considering the heat dissipation unit to simplify the heat transfer model of the vehicle. The results showed that relative to Roewe 950, Mirai intake air flow rate was approximately 10% higher, the heat transfer capacity was approximately 7% higher, and the intake grille area was larger. The coolant outlet temperature of Mirai was lower than that of Roewe 950, which was beneficial for the long term and stable operation of a fuel cell. This comparative study provided guidance for the intake grille and radiator design of fuel cell vehicles. The only difference between fuel cell vehicles on the market and conventional vehicles was that in the former, the internal combustion engine was replaced with a fuel cell stack, which had insufficient heat transfer capacity because of the reducing temperature difference. Increasing the intake grille area and the heat exchange capacity of the radiator were the key issues for the development of fuel cell vehicles. In this study, an optimal window opening angle of the radiator fin of 23° provided a maximal heat transfer coefficient. 相似文献
18.
This paper is based on a review of the methodological approaches associated with solid waste management (SWM) in the context of sub-Saharan African (SSA) cities. Using Kinshasa, the capital of the Democratic Republic of the Congo, as a case study, the paper proposes a new way of looking at solid waste in the bid to come up with alternative methods to improve the plight of SWM. A combination of qualitative research methods and system analysis have been employed to evaluate the causal relationships observed in contemporary SWM systems in Kinshasa. This paper argues that there is an absence of coherent and broad-based approaches to SWM in Kinshasa as is common in other SSA countries. Empirical evidence suggests that contemporary SWM strategies and approaches developed on a global scale which have increasingly been adopted by the Congolese national and local government authorities have proven inadequate to address the SWM realities on a local level. Using system thinking and system dynamics, this paper attempts to develop a feasible methodological framework focusing on the formulation of an appropriate approach to improve SWM in Kinshasa. It is argued that new ways of approaching the complexity that exists in SWM will facilitate the adoption of technologies and innovative ways of thinking and managing solid waste in a more sustainable, socially, and environmentally accepted manner. 相似文献
19.
Guihua Zhu Feng Jiang Dongyang Tan Jisheng Zhang Ying Zhao 《International Journal of Green Energy》2018,15(2):106-112
In this research, desert sand is used as the sensible heat storage medium, which exchanges heat with air in the downcomer to realize heat storage and heat release. The desert sand distribution uniformity has a significant impact on the heat exchange performance and efficiency between desert sand and air for the process of convection in the downcomer. Given the superiority of sensible heat storage in convective heat transfer between desert sand and air, distributors with cylinder or conical bore solid particles and homogeneity performance testing device are designed and manufactured on the basis of convection system equipped with solid particle–air downcomer. Then, the convection experiment between solid sand and air is researched. The greater the desert sand flow rate and higher the volume density, the larger the variance of regional mass flow rate and the worse the homogeneity performance. For the cylinder bore distributor, the smaller the sand particle size is, the greater affected the sand groups can be. The sand homogeneity performance is preferable with the two particle size ranges: 0.18-0.25 mm and 0.15-0.18 mm. The total sand flow rate decreases, but the uniformity improves with the increase of the air flow velocity, and the best distribution performance is achieved at an air velocity of 0.6 m/s. However, the distribution performance declines with the air flow velocity persistently increasing because the sand groups are pushed to one pipe side close to the wall. The sand groups deflect seriously with the air flow velocity increasing. 相似文献