首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites were prepared by the ultrasonic dispersion and liquid boiling method. In succession, they were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Acid red B as a model dye compound was degraded under solar light irradiation to evaluate the photocatalytic activities of the Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites. We found that the photocatalytic activity of ZnO–TiO2 composite can be enhanced by adding an appropriate amount of Er3+:YAlO3. We reviewed influencing factors, such as Er3+:YAlO3 content, heat-treated temperature and heat-treated time on the photocatalytic activity of the Er3+:YAlO3/ZnO–TiO2 composites. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+:YAlO3/ZnO–TiO2 amount and solution acidity on the photocatalytic degradation of acid red B dye in aqueous solution were investigated in detail. Simultaneously, the degradation and comparison of other dyes such as methyl orange (MO), rhodamine B (RM-B), azo fuchsine (AF), congo red (CG-R) and methyl blue (MB) were also reviewed. In addition, we attempted to explore both the principle of possible excitation of Er3+:YAlO3/ZnO–TiO2 under solar light irradiation and the mechanism of photocatalytic degradation.  相似文献   

2.
Five types of commercially available activated carbons (ACs) were coated with TiO2 nanoparticles prepared using a sol–gel method. Color and trace organics remaining in the actual treated effluent were adsorbed by TiO2 coated ACs. The absorbed organic compounds were then decomposed using a photocatalytic process, and the ACs were regenerated for reuse. The efficiency of the process was assessed by the characterization of true color and A254 (the organics absorption at the wavelength of 254 nm) at the beginning and the end of the experiment. The effects of UV light source, UV irradiation time, hydrogen peroxide and ultrasound on the efficiency of photocatalytic regeneration were also investigated. Significant differences in the efficiency were observed between uncoated ACs and TiO2 coated samples. Among the 5 types of ACs tested, AC-3, AC-4 and their coated ones achieved better efficiency in color and A254 removal, with around 90% or more color and A254 being removed within 1 h of treatment. The data obtained in this study also demonstrated that the photocatalytic process was effective for decomposing the adsorbed compounds and regenerating the spent TiO2/AC-3. Finally, it was found that this regeneration process could be greatly enhanced with the assistance of H2O2 and ultrasound by reducing the required regeneration time.  相似文献   

3.
The formation and spray coating, with Degussa P25 titanium dioxide (TiO2), of a room temperature curable resin to form a photocatalytically active material is described in this paper. The TiO2 surface layers produced have been characteristed with the aid of scanning electron microscope analysis. The photocatalytic activity of the samples tested using a gas phase continuous flow type photoreactor, the test pollutant being propene. Analysis of the test results indicates the potential of TiO2 coated polymers to form effective photocatalytic materials, with the potential to improve indoor air quality and reduce the energy consumption of ventilation systems.  相似文献   

4.
Fenton treatment (Fe2+/H2O2) and different ozone-based Advanced Oxidation Processes (AOPs) (O3, O3/OH and O3/H2O2) were evaluated as pre-treatment of a mature landfill leachate, in order to improve the biodegradability of its recalcitrant organic matter for subsequent biological treatment. With a two-fold diluted leachate, at optimised experimental conditions (initial pH 3, H2O2 to Fe2+ molar ratio of 3, Fe2+ dosage of 4 mmol L−1, and reaction time of 40 min) Fenton treatment removed about 46% of chemical oxygen demand (COD) and increased the five-day biochemical oxygen demand (BOD5) to COD ratio (BOD5/COD) from 0.01 to 0.15. The highest removal efficiency and biodegradability was achieved by ozone at higher pH values, solely or combined with H2O2. These results confirm the enhanced production of hydroxyl radical under such conditions. After the application for 60 min of ozone at 5.6 g O3 h−1, initial pH 7, and 400 mg L−1 of hydrogen peroxide, COD removal efficiency was 72% and BOD5/COD increased from 0.01 to 0.24. An estimation of the operating costs of the AOPs processes investigated revealed that Fe2+/H2O2 was the most economical system (8.2 € m−3 g−1 of COD removed) to treat the landfill leachate. This economic study, however, should be treated with caution since it does not consider the initial investment, prices at plant scale, maintenance and labour costs.  相似文献   

5.
Biodiesel produced by transesterification of waste animal oil is a promising green fuel in the future. ZnO-Al2O3 and ZnO/Zn2Al composition oxides were prepared by co-precipitation method and impregnation method, respectively. The above catalysts were characterized by X-ray diffraction (XRD), Brunauer--Emmett--Teller (BET) and CO2 adsorption and temperature-programmed desorption (CO2-TPD) and show that the high activity for the catalyst is attributed to its high alkalinity. The reaction parameters were optimized and the results show that the transesterification ratio of waste animal oil can reach 98.7% with 10% ZnO/Zn2Al catalyst after 2 h. Moreover, 10%ZnO/Zn2Al compound oxides can be active for the successive cycles. The glycerol as a predominant by-product after transesterification is of high purity with high use value.  相似文献   

6.
The olive mill waste (OMW) generated from olive oil extraction process constitutes a major environmental concern owing to its high organic and mineral matters and acidic pH. Anaerobic digestion (AD) is a main treatment for reducing the organic matter and toxic substances contained in OMW and generating at the same time, energy in the form of biogas. AD of OMW that contains lignocellulose is limited by the rate of hydrolysis due to their recalcitrant structure. This study is devoted to the effect of Fenton process (FP) pretreatment on olive mill wastewater (OMSW) /olive mill solid waste (OMWW) co-digestion to improve their digestibility and in this way the biogas production. The FP pretreatment was performed in batch mode at 25°C, various H2O2/[Fe2+] ratios (100–1200), catalyst concentration ([Fe2+]) ranging from 0.25 to 2 mM, reaction time varying from 30 to150 min, and different pH (3–11). The best performance was obtained with H2O2/[Fe2+] = 1000, [Fe2+] = 1.5 mM, 120 min, and pH 3. Biochemical methane potential (BMP) tests conducted in batch wise digester and at mesophilic conditions (37 °C) showed that cumulative biogas and methane production were higher without FP treatment, and correspond to 699 and 416 mL/g VS, respectively. However, pre-treated OMSW results into an increase of 24% of methane yield. After 30 days of AD, the methane yield was 63%, 54%, and 48%, respectively, for OMSW treated without iron precipitation, with iron precipitation and untreated OMSW sample.  相似文献   

7.
Photocatalytic degradation of phenol on different phases of TiO2 particles was examined under 400-W UV irradiation. The effects of various operating parameters including TiO2 dosage, solution pH (4–10), and initial phenol concentration (0.13–1.05 mM) on phenol degradation were investigated. Three forms of TiO2 photocatalysts such as pure anatase phase, pure rutile phase, and the mixed phase were prepared by sol-gel method and followed annealing at different temperatures. The annealing temperature used were 500 °C, 700 °C and 900 °C for pure anatase phase, the mixed phase, and pure rutile phase, respectively. It was shown that pure anatase TiO2 exhibited higher photocatalytic activity than the physical mixture of pure anatase and rutile TiO2. Moreover, the TiO2 particle with a specific fraction of mixed anatase and rutile phases exhibited better performance than pure anatase TiO2. Finally, the degradation rate could be satisfactorily fitted by a pseudo-first-order kinetic model.  相似文献   

8.
The present work investigated color and biochemical oxygen demand (COD) removal from treated landfill leachate via advanced oxidative processes (AOPs) artificially emitted. The AOP H2O2/UV, TiO2/UV, and photolysis were tested in two bench‐scale photoreactors: The first one with UV‐C lamp and the other with UV‐A lamp associated or not with coagulation / flocculation pretreatment. Crude leachate samples with pH ranging from 8 to 3 were used, and time varied in 30, 45, and 60 minutes. Experiments were performed in two stages: step 1 with a 20 mL volume from each sample and step 2 with repetition of the best results from the previous step, adopting the 150 mL volume. In step 1, the AOP applied in the crude leachate sample showed the best results, standing out H2O2/UV‐C with 30 minutes and TiO2/UV‐A with 60 minutes. In step 2, H2O2/UV‐C had a 60% color removal and 25% COD reduction, while TiO2/UV‐A had a 10% color removal and 20% COD reduction. Therefore, the H2O2/UV‐C process was the most efficient, because the complex characteristics of the effluent interfered in the TiO2/UV‐A efficiency, but it is necessary to eliminate the process interferences. The use of artificial radiation is a viable alternative; however, it can be costly, being relevant in the associations between processes with artificial UV and solar UV, as the natural radiation becomes more attractive and allows the process operating costs reduction.  相似文献   

9.
The paper reports the production of syngas from dry reforming of methane (DRM) over La1?xCexNi1?yFeyO3 (x, y = 0–0.4) perovskites. A series of La1?xCexNi1?yFeyO3 were designed by central composite design (CCD) and synthesized by a sol–gel auto combustion method. Artificial neural network (ANN) approach was used to determine the relationship between preparation and operational parameters on the performance of the catalysts in the DRM process. Nickel mole fraction, lanthanum mole fraction, calcination temperature, and reaction temperature were considered as input variables, and conversion of methane was considered as the output variable. An ANN model with nine neurons in the hidden layer was the suitable in predicting conversion of methane. The genetic algorithm (GA) was subsequently used to determine the optimal preparation condition for enhancing the conversion of methane. La0.6Ce0.4Ni0.99Fe0.01O3 catalyst, calcined at 756°C was obtained to be the most active catalyst owing to the optimal composition of nickel and lanthanum in the catalyst formulation.  相似文献   

10.
The degradation of polyacrylamide (PAM) in simulate wastewater was studied in UV/Fenton/C4H4O62? system. The factors such as molecular ratio of H2O2/Fe2+/C4H4O62?, pH, and the dosage of Fenton reagent that could affect the PAM degradation in the UV/Fenton/C4H4O62? system were investigated. The experimental results showed that adding C4H4O62? to UV/Fenton system could form photosensitive ferrous complexes, which led to higher degradation efficiency of PAM. The degradation rate of PAM could be up to 95.2% under the following conditions: the concentration of H2O2, Fe2+, and C4H4O62? were 22.5, 2.25, and 2.25 mmol/L, respectively (i.e., molecular ratio of H2O2/Fe2+/C4H4O62? was 10:1:1), the pH value was 3.0.  相似文献   

11.
FeSO4·xH2O is generated in large amounts in galvanizing workshops. It can be reutilized by conversion to Fe2O3. In this study, the recovery of Fe2O3 from FeSO4·xH2O formed in the galvanizing process has been examined. The experimental work was carried out at various temperatures and times in the oxidizing medium. The reaction temperatures and times were selected as 450, 500, 550, 600, 650, 700, 800 and 900°C, and 15, 30, 45, 60, 90 and 120 minutes, respectively. In order to determine the amount of Fe2O3, a titrimetric method was applied. The reaction products were characterized by means of IR and XRD techniques.The extent of conversion is low at temperatures below 650°C. Almost all of the iron (II) sulfate in the original sample was converted to iron(III) oxide at 650°C (120 min), 700°C (90 min), 800°C (60 min) and 900°C (45 min).  相似文献   

12.
Solid fuels in chemical-looping combustion   总被引:1,自引:0,他引:1  
The feasibility of using a number of different solid fuels in chemical-looping combustion (CLC) has been investigated. A laboratory fluidized bed reactor system for solid fuel, simulating a chemical-looping combustion system by exposing the sample to alternating reducing and oxidizing conditions, was used. In each reducing phase 0.2 g of fuel in the size range 180–250 μm was added to the reactor containing 40 g oxygen carrier of size 125–180 μm. Two different oxygen carriers were tested, a synthetic particle of 60% active material of Fe2O3 and 40% MgAl2O4 and a particle consisting of the natural mineral ilmenite. Effect of steam content in the fluidizing gas of the reactor was investigated as well as effect of temperature. A number of experiments were also made to investigate the rate of conversion of the different fuels in a CLC system. A high dependency on steam content in the fluidizing gas as well as temperature was shown. The fraction of volatiles in the fuel was also found to be important. Furthermore the presence of an oxygen carrier was shown to enhance the conversion rate of the intermediate gasification reaction. At 950 °C and with 50% steam the time needed to achieve 95% conversion of fuel particles with a diameter of 0.125–0.18 mm ranged between 4 and 15 min depending on the fuel, while 80% conversion was reached within 2–10 min. In almost all cases the synthetic Fe2O3 particle with 40% MgAl2O4 and the mineral ilmenite showed similar results with the different fuels.  相似文献   

13.
In the present work, a novel cellulose-based porous heterogeneous solid acid catalyst encapsulation of ferriferous oxide (Fe3O4) and sulfonated graphene (GO-SO3H) into cellulose to form composite porous microspheres catalyst (GO-SO3H/CM@Fe3O4) was synthesized and evaluated for biodiesel production from Pistacia chinensis seed oil. The SEM, EDS and FTIR analysis revealed that the catalyst GO-SO3H/CM@Fe3O4 owned stronger active sites and GO-SO3H dispersed well in porous surface and inside of cellulose support. Under the optimum conditions, microwave-assisted transesterification process was carried out with the best catalyst amount, i.e. 5 wt% GO-SO3H/CM@Fe3O4 (weight ratio of GO-SO3H/cellulose), and conversion yield reached 94%. The prepared catalyst could be easily separated from reaction solution by extra magnetic field and reclaimed at least five runs.  相似文献   

14.
Ammonia (NH3) is emitted into the atmosphere by various industries and other sources and causes environmental pollution. Considering the hazards of ammonia, detecting leakage from vessels and pipes demands the use of sensors. Therefore, the development of NH3 gas sensors assumes considerable importance to researchers and regulators and to industry, businesses, and facilities that make, store, or use ammonia. The use of metal oxide sensors (MOS) for detecting NH3 gas, such as zinc oxide (ZnO), has been a topic of interest to researchers seeking methods to detect NH3 gas, even at low concentrations. In this article, an attempt has been made to review the research thus far published on the synthesis of ZnO‐based NH3 gas sensor materials, their characterization, and analyses of their performance. Finally, we make several recommendations regarding the scope of future research. For example, the kinetics of the sensor materials should be determined. Furthermore, extensive studies of gas–solid (NH3–ZnO) adsorption are proposed to ascertain the exact adsorption mechanism in terms of isotherm, kinetics, and diffusive mass transport, and to determine “reversibility” and “recovery” of sensor materials so they can continue sensing and activating alarms when necessary for practical applications.  相似文献   

15.
This research article demonstrates biodiesel synthesis through the methanolysis of the oily contents (4.02 ± 0.27% w/w on dried basis) of Dictyota dichotoma collected from the coast of Hawksbay, Pakistan. The metal oxides (CaO, MgO, ZnO, and TiO2) used as nanocatalysts were refluxed (5% K2SO4), calcinated (850 °C) and characterized by Atomic Force Microscopy (AFM) which produced 93.2% w/w FAME (biodiesel) at relatively mild condition (5% catalyst, 65 °C, 3 h, 18:1 molar ratio) using CaO. Whereas, MgO, ZnO, and TiO2 produced 92.4%, 72.5%, and 31.8% w/w FAME, respectively at elevated condition (225 °C). Thus, CaO was considered to be the best catalyst among the others. This tri-phase reaction require continuous fast mixing and the yield depends on the reaction parameters like catalyst amount, temperature, reaction time and molar ratio (methanol: oil). The reusability of these heterogeneous catalysts simplified the purification step, reduced the waste generation and make the final product technically and economically viable.  相似文献   

16.
As a large and diverse group of secondary metabolites, phenolic compounds are one of the most common chemical pollutants present in water resources. these compounds can have toxic effects on ecosystems and humans. Therefore, their removal from water sources appears to be of great importance. In this study, a magnetic graphene oxide (MGO) photocatalyst was synthesized and used to remove phenol from water. The fabricated GO magnetic nanocomposites were determined by SEM and FTIR techniques. Afterward, these nanoparticles were used to remove phenol from aquatic media considering different operational parameters, including pH of the solution, initial concentration of phenol, contact time, and adsorbent dosage. The results showed that the magnetized GO nanoparticles could remove 90.83% of phenol molecules under the optimal conditions of solution pH = 3.0, initial phenol concentration of 20 mg/L, adsorbent concentration of 300 mg/L, and contact time of 120 min. additionally have compared the results of UV, Fe3O4/GO, and Fe3O4/GO/UV on the removal of phenol under optimum conditions. Accordingly, the phenol removal efficiencies for UV alone, Fe3O4/GO, and Fe3O4/GO/UV were obtained at 4.5, 65.73, and 90.83%, respectively. Based on the findings, the prepared magnetic GO nanoparticles have extended capabilities such as easy and rapid separation from sample and high potential in removing phenolic compounds, so, it can be introduced as an appropriate adsorbent for removal of this pollutant from water and wastewater.  相似文献   

17.
The selective catalytic reduction (SCR) rate of NO with N-containing reducing agents can be enhanced considerably by converting part of NO into NO2. The enhanced reaction rate is more pronounced even at lower temperatures by using an equimolar mixture of NO and NO2 (fast SCR reaction). The oxidation characteristics of NO over catalyst Pt/TiO2 have been determined in a fixed bed reactor (8 mm-ID) with different concentrations of oxygen, nitric oxide and nitrogen dioxide in the presence of 8% water. The conversion of NO to NO2 increases with increasing oxygen (O2) concentration from 3 to 12%, but it levels off at higher O2 concentrations. The NO conversion to NO2 decreases with increasing NO concentration and it also decreases by an addition of NO2 in the feed stream. Therefore, the oxidation of NO over Pt/TiO2 catalyst could be auto-inhibited by the reaction product of NO2. The effects of CO and SO2 on NO oxidation characteristics have also been determined. In fact, the presence of SO2 significantly suppresses oxidation of NO but due to the less stability of sulfate on anatase structure in TiO2, it becomes less significant. On the other hand, the presence of CO increases NO oxidation significantly due to the auto-inhibition effect by CO. Moreover, the effect of SO2/CO on NO oxidation has also been determined and it was observed that NO oxidation decreases with the increase in SO2/CO ratio.  相似文献   

18.
The effect of impregnation of activated carbon with Cr2O and Fe2O3 and promotion by Zn2+ on its adsorptive properties of carbon dioxide was studied using a volumetric adsorption apparatus at ambient temperature and low pressures. Slurry and solution impregnation methods were used to compare CO2 capture capacity of the impregnated activated carbon promoted by Zinc. The obtained adsorption isotherms showed that amount of CO2 adsorbed on the samples impregnated by Cr2O was increased about 20% in compare to raw activated carbon. The results also showed that Fe2O3 was not an effective impregnating species for activated carbon modification. Moreover slurry impregnation method showed higher CO2 adsorption capacity in comparison with solution impregnation method. Samples prepared by co-impregnation of two metal species showed more adsorption capacity than samples impregnated by just one metal species individually. Washing the impregnated samples by metal oxide resulted in 15% increase in CO2 adsorption capacities of activated carbons which can be attributed to the metal oxides removal covering the adsorption surface. Decreasing impregnation temperature from 95 to 25 °C in solution method showed a significant increase in CO2 adsorption capacity. Sips equation was found a suitable model fitting to the adsorption data in the range studied.  相似文献   

19.
Mesoporous Fe2O3–Al2O3–CuO catalysts promoted with alkali oxides were synthesized and used in water gas shift reaction (WGSR) at high temperatures for hydrogen purification. These chromium-free catalysts were characterized using nitrogen adsorption/desorption, hydrogen temperature programmed reduction, X-ray diffraction (XRD), and transmission electron microscopy techniques. The synthesized catalysts with narrow single-modal pore size distribution in mesopore region possessed high specific surface area. The catalytic results revealed that except Cs, the addition of other alkali promoters declined the catalytic activity. However, all catalysts showed higher catalytic performance than the conventional commercial catalyst. The results showed an optimum content of Cs promoter (3 wt.%) for the promoted Fe–Al–Cu catalyst (3 wt.% Cs-FAC), which exhibited the highest activity in WGSR at high temperature.  相似文献   

20.
Durability of conventional concretes containing black rice husk ash   总被引:1,自引:0,他引:1  
In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water–binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H2SO4) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water–binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO2 + Al2O3 + Fe2O3)/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号