首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
China is rich in energy plant resources. In this article, 64 plant species are identified as potential energy plants in China. The energy plant species include 38 oilseed crops, 5 starch-producing crops, 3 sugar-producing crops and 18 species for lignocellulosic biomass. The species were evaluated on the basis of their production capacity and their resistance to salt, drought, and/or low temperature stress. Ten plant species have high production and/or stress resistance and can be potentially developed as the candidate energy plants. Of these, four species could be the primary energy plants in China: Barbados nut (Jatropha curcas L.), Jerusalem artichoke (Helianthus tuberosus L.), sweet sorghum (Sorghum bicolor L.) and Chinese silvergrass (Miscanthus sinensis Anderss.). We discuss the use of biotechnological techniques such as genome sequencing, molecular markers, and genetic transformation to improve energy plants. These techniques are being used to develop new cultivars and to analyze and manipulate genetic variation to improve attributes of energy plants in China.  相似文献   

2.
The scarcity of fossil fuels has urged the economically developed countries to find the resources for an alternative energy sources. In apprehension to this, biofuels, like bioethanol and biobutanol, produced from lignocellulosic biomass were considered as potential alternative. There are several methods for the pretreatment of biomass before it is being used as a feedstock for the production of fermentable sugars. However, one of the crucial concerns here is to enumerate an economic pretreatment scheme that can be implemented in large scale for the production of mostly exposed cellulosic part from biomass. This will ensure an effective hydrolysis of cellulose for the production of fermentable sugars and the production of biobutanol from these derived sugars. Moreover, the keynote understanding of an effective fermentation is the production of less inhibitory compounds like furfural, hydroxymethyl furfural during the hydrolysis of cellulose. Enzymatic hydrolysis of cellulose was reported as the most efficient method is this aspect. Trichoderma sp. was found the mostly used resources for the enzyme called cellulase and Aspergillus sp. for hemicellulase enzymes. The most crucial part here is the isolation of proper enzyme that will increase the rate of hydrolysis. Moreover, selection of proper pretreatment process will be a key benefit to the production of fermentable sugars through enzymatic hydrolysis. Based on the biomass nature, the evaluated hot water pretreatment followed by enzymatic hydrolysis with a provision of enzyme reusability (like encapsulated or enzyme separation with membrane) seems to be promising for enhanced biofuel-production.  相似文献   

3.
This paper presents a study of the feasibility of utilising roadside vegetation for biogas production in Denmark. The potential biomass yield, methane yields, and the energy balances of using roadside grass for biogas production was investigated based on spatial analysis. The results show that the potential annual yield of biomass obtainable from roadside verges varies widely depending on the local conditions. The net energy gain (NEG) from harvest, collection, transport, storage and digestion of roadside vegetation was estimated to range from 60,126–121,476 GJ, corresponding to 1.5–3.0% of the present national energy production based on biogas. The estimated values for the energy return on invested energy (EROEI) was found to range from 2.17 to 2.88. The measured contents of heavy metals in the roadside vegetation was seen not to exceed the legislative levels for what can be applied as fertilizer on agricultural land, neither does it reach levels considered as inhibitory for the anaerobic fermentation process. From a practical point of view, few challenges were identified related to the acquisition and processing of the roadside vegetation. Considering the positive net energy gains, further energy investments for management of these challenges can be made. Despite the somewhat low EROEI values, the use of this resource could however result in other positive externalities, such as improved biodiversity of the verges and recycling of nutrients.  相似文献   

4.
This study was aimed at establishing the feasibility of microalgae biomass acquisition from waters of the Vistula Lagoon with the use of an installation operating in the fractional–technical scale, and at determining the effectiveness of biogas production from the acquired substrate. Depending on the technological solution of the concentration process, the degree of aquatic biomass hydration ranged from 99.6 to 97.90%. The quantity of biogas produced during methane fermentation fitted within the range of 243.9 to 395.2 dm3/kg d.m.. The values achieved were found to depend directly on the concentration of organic matter in the acquired water biomass and on system’s loading with a feedstock of organic compounds. The content of methane in a gaseous mixture ranged from 41.4 to 61.9%. The biomass produced was predominated by taxa belonging to Cyanoprokaryota, Bacillarophyceae, and Chlorophyta.  相似文献   

5.
There is an increasing need to strategize and plan irrigation systems under varied climatic conditions to support efficient irrigation practices while maintaining and improving the sustainability of groundwater systems. This study was undertaken to simulate the growth and production of soybean [Glycine max (L.)] under different irrigation scenarios. The objectives of this study were to calibrate and validate the CROPGRO‐Soybean model under Texas High Plains’ (THP) climatic conditions and to apply the calibrated model to simulate the impacts of different irrigation levels and triggers on soybean production. The methodology involved combining short‐term experimental data with long‐term historical weather data (1951–2012), and use of mechanistic crop growth simulation algorithms to determine optimum irrigation management strategies. Irrigation was scheduled based on five different plant extractable water levels (irrigation threshold [ITHR]) set at 20%, 35%, 50%, 65%, and 80%. The calibrated model was able to satisfactorily reproduce measured leaf area index, biomass, and evapotranspiration for soybean, indicating it can be used for investigating different strategies for irrigating soybean in the THP. Calculations of crop water productivity for biomass and yield along with irrigation water use efficiency indicated soybean can be irrigated at ITHR set at 50% or 65% with minimal yield loss as compared to 80% ITHR, thus conserving water and contributing toward lower groundwater withdrawals. Editor's note: This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

6.
As the second largest corn producer in this world, China has abundant corn straw resources. The study assessed the energy balance and global warming potential of corn straw-based bioethanol production and utilization in China from a life cycle perspective. The results revealed that bioethanol used as gasoline and diesel blend fuel could reduce global warming potential by 10%–97% and 4%–96%, respectively, as compared to gasoline and diesel for transport. The total global warming potential, net global warming potential, net energy, and Net Energy Ratio per MJ ethanol generated from corn straw-based bioethanol system are estimated to be 0.20 kg CO2-eq, 0.012 kg CO2-eq, 0.60 MJ, and 1.87, respectively. By using sensitivity analysis, we found that the collected coefficient and compressing density of straw have a more obvious influence on energy balance; transportation distance has a more obvious influence on global warming potential emission factor. The by-products may be utilized as fertilizer, animal feed, cement replacement, or high-value lignin chemicals, which make a contribution to offsetting 0.28 MJ per MJ ethanol of energy consumption.  相似文献   

7.
Oil palm empty fruit bunch (OPEFB) is a potential raw material for production of lignocellulosic bioethanol. The OPEFB was pretreated with 8% sodium hydroxide (NaOH) solution at 100°C for 10 to 90 min. Enzymatic digestion was carried out using cellulase and β-glucosidase at 45°C for 24 h. It was then inoculated with Mucor indicus spores suspension and fermented under anaerobic conditions at 37°C for 96 h. Sodium hydroxide pretreatment effectively removed 51–57% of lignin in the OPEFB and also its hemicellulose (40–84%). The highest glucan digestibility (0.75 g/g theoretical glucose) was achieved in 40-min NaOH pretreatment. Fermentation by M. indicus resulted in 68.4% of the theoretical ethanol yield, while glycerol (16.2–83.2 mg/g), succinic acid (0–0.4 mg/g), and acetic acid (0–0.9 mg/g) were its by-products. According to these results, 11.75 million tons of dry OPEFB in Indonesia can be converted into 1.5 billion liters of ethanol per year.  相似文献   

8.
Hydrilla (Hydrilla verticillata) is one of the world’s most problematic invasive aquatic plants. Although management of hydrilla overgrowth has often been based on use of chemical herbicides, issues such as the emergence of herbicide-resistant hydrilla biotypes and the need for in situ nutrient remediation strategies have together raised interest in the use of harvester machines as an alternative management approach. Using a life cycle assessment (LCA) approach, we calculated a range of net energy and economic benefits associated with hydrilla harvests and the utilization of biomass for biogas and compost production. Base case scenarios that used moderate data assumptions showed net energy benefit ratios (NEBRs) of 1.54 for biogas production and 1.32 for compost production pathways. NEBRs for these respective pathways rose to 2.11 and 2.68 when labor was excluded as a fossil fuel input. Base case biogas and compost production scenarios respectively showed a monetary benefit cost ratio (BCR) of 1.79 and 1.83. Moreover, very high NEBRs (3.94 for biogas; 6.37 for compost) and BCRs (>11 for both biogas and compost) were found for optimistic scenarios in which waterways were assumed to have high hydrilla biomass density, high nutrient content in biomass, and high priority for nutrient remediation. Energy and economic returns were largely decoupled, with biogas and fertilizer providing the bulk of output energy, while nutrient remediation and herbicide avoidance dominated the economic output calculations. Based on these results, we conclude that hydrilla harvest is likely a suitable and cost-effective management program for many nutrient-impaired waters. Additional research is needed to determine how hydrilla harvesting programs may be most effectively implemented in conjunction with fish and wildlife enhancement objectives.  相似文献   

9.
Biodiesel provides a feasible solution to the twin crisis of energy security and environmental concerns prevalent today, and it can be extracted from conventional oil crops as well as microalgae. However, lipid productivity in case of microalgae is much higher and has several advantages as compared with crop plants, so it is a better feedstock for biodiesel. In case of Chlorella pyrenoidosa, the heterotrophic cultured cells were found to be better in terms of lipid production, and ultimately biodiesel production, but the bottleneck is that in this mode glucose is used to feed the cells, which amounts to almost 80% of the total cost of biodiesel production. The purpose of this study is to evaluate and highlight the feasibility of using the industrially cheap cane molasses as a carbon source in place of glucose for a large-scale, low-cost lipid production of Chlorella pyrenoidosa. When treated molasses was used as a carbon source instead of glucose, the biomass sharply increases from 0.89 to 1.22 g L–1. On the other hand, the total lipid content increases from 0.27 to 0.66 g g–1. The specific growth rate and yield was higher in treated molasses as compared with that in glucose-supplemented. A mathematical model was also developed based on logistic, Luedeking–Piret, and Luedeking-Piret-like equations. Model predictions were in satisfactory agreement with the measured data, and the mode of lipid production was growth-associated.  相似文献   

10.
Contemporary reports on the energy and environmental benefits of bioethanol have suggested that the cellulosic ethanol is significantly more efficient. To understand the development potential of energy crops in Taiwan, the present study has assessed the resources and cost inputs for the planning, harvesting, transporting, and storing procedures of the first generation energy crops during 2007–2010 with the perspective of LCA. In addition, a field investigation focusing on rice straw, the largest agricultural waste in Taiwan, has been conducted since 2010 to obtain fundamental data.This study further analyzes the first and second-generation feedstocks from the perspective of LCA based on field investigated data. Taiwan has not yet established an ethanol plant; therefore, this study established production data by simulating the production efficiency of an economical scale using parameters obtained through production trials, and proposed an evaluation model for the energy input, GHG, and production costs of bioethanol in Taiwan. The results of this study were cross-compared with foreign literature to explore the development potential of bioethanol in Taiwan. The results indicate that based on the current cellulosic ethanol technology in Taiwan, regarding the energy balance, GHG, and production costs, is less efficient than that of the first generation bioethanol.  相似文献   

11.
Kitchen wastes containing high amounts of carbohydrates have potential as low-cost substrates for fermentable sugar production. In this study, enzymatic saccharification of kitchen waste was carried out. Response surface methodology (RSM) was applied to optimize the enzymatic saccharification conditions of kitchen waste. This paper presents analysis of RSM in a predictive model of the combined effects of independent variables (pH, temperature, glucoamylase activity, kitchen waste loading, and hydrolysis time) as the most significant parameters for fermentable sugar production and degree of saccharification. A 100 mL of kitchen waste was hydrolyzed in 250 mL of shake flasks. Quadratic RSM predicted maximum fermentable sugar production of 62.79 g/L and degree of saccharification (59.90%) at the following optimal conditions: pH 5, temperature 60°C, glucoamylase activity of 85 U/mL, and utilized 60 g/L of kitchen waste as a substrate at 10 h hydrolysis time. The verification experiments successfully produced 62.71 ± 0.7 g/L of fermentable sugar with 54.93 ± 0.4% degree of saccharification within 10 h of incubation, indicating that the developed model was successfully used to predict fermentable sugar production at more than 90% accuracy. The sugars produced after hydrolysis of kitchen waste were mainly attributed to monosaccharide: glucose (80%) and fructose (20%). The fermentable sugars obtained were subsequently used as carbon source for bioethanol production by locally isolated yeasts: Saccharomyces cerevisiae, Candida parasilosis, and Lanchancea fermentati. The yeasts were successfully consumed as sugars hydrolysate, and produced the highest ethanol yield ranging from 0.45 to 0.5 g/g and productivity between 0.44 g L–1 h–1 and 0.47 g L–1 h–1 after 24-h incubation, which was equivalent to 82.06–98.19% of conversion based on theoretical yield.  相似文献   

12.
The past few years have seen a phenomenal rise in the production and consumption of biofuels and biodiesel at the global level. This development is of special significance to Africa, where about 550 million people (75% of the total population in Sub‐Saharan Africa) depend on traditional biomass (wood, charcoal, cow dung, etc.) and lack access to electricity or any kind of modern energy service. Derived from plants and agricultural crops, biofuels and biodiesel represent modern forms of bioenergy and more efficient use of biomass energy. Beyond efficiency, modern bioenergy offers tremendous opportunities to meet growing household energy demands, increase income, reduce poverty, and mitigate environmental degradation. In the African setting, energy and livelihoods security are indeed inseparable. This paper argues economic, social, and environmental benefits of modern bioenergy can be realized through a strategy that centres on smallholder production and processing schemes and pursuit of a livelihood approach to energy development. Such a scheme opens up new domestic markets, generates new cash incomes, improves social wellbeing, enhances new technology adoption, and lays the ground for rural economic transformation and sustainable land use. The paper concludes by underlining the vital importance of considering sound property rights and strategic planning of sustainable development as tools for sustainable energy and livelihoods security.  相似文献   

13.
In this study, palm oil mill effluent (POME) was used as an alternative medium for algal biomass and lipid production. The influence of different concentrations of filtered and centrifuged POME in sea water (1, 5, 10 and 15%) on microalgal cell growth and lipid yield were investigated. Both Nannochloropsis oculata and Tetraselmis suecica had enhanced cell growth and lipid accumulation at 10% POME with maximum specific growth rate (0.21 d–1 and 0.20 d–1) and lipid content (39.1 ± 0.73% and 27.0 ± 0.61%), respectively, after 16 days of flask cultivation. The total Saturated Fatty Acid (SFA) (59.24%, 68.74%); Monounsaturated Fatty Acid (MUFA) (15.14%, 12.26%); and Polyunsaturated Fatty Acid (PUFA) (9.07%, 8.88%) were obtained for N. oculata and T. suecica, respectively, at 10% POME. Algal cultivation with POME media also enhanced the removal of Chemical Oxygen Demand (COD) (93.6–95%), Biological Oxygen Demand (BOD) (96–97%), Total Organic Compound (TOC) (71–75%), Total Nitrogen (TN) (78.8–90.8%) and oil and grease (92–94.9%) from POME.  相似文献   

14.
Production of biogas from animal wastes could lessen the problems of energy shortage and indiscriminate animal waste disposal. A study of anaerobic digestion of selected ratios of cattle, swine, and poultry wastes was carried out to evaluate their biogas yields. Cattle (C), swine (S), and poultry (P) wastes were mixed as C:S:P in the following ratios: 1:0:0 (control), 1:0:1, 4:1:3, 2:1:1, 4:3:1, and 1:1:0 by mass to obtain six samples of of 0.4 kg each, referred to as samples 1 to 6 respectively. A quantity (0.1 kg) of inoculum (obtained by pre-fermenting equal masses of poultry waste and water for 50 days under anaerobic condition) and 0.5 kg of water were added to each of the samples. The resulting slurries were digested in triplicates for 30 days in 1.3 L laboratory-scale anaerobic digesters. The volume of biogas produced was obtained by downward displacement of water in a measuring cylinder. The cumulative biogas yields of samples 1 to 6 were 332.5, 497.5, 487.5, 467.5, 457.5, and 430.0 cm3/kg slurry respectively. The cumulative biogas yields of samples 2 and 3 were significantly (p < 0.05) higher than those of the other samples but not significantly (p > 0.05) different from each other. However, the cumulative biogas yield of sample 1 was significantly (p < 0.05) lower than those of the other samples. The study revealed that a blend of equal masses of cattle and poultry wastes is optimum for biogas production.  相似文献   

15.
Sawtooth Oak (Quercus acutissima) shells were used as a renewable and low-cost agricultural residue for bioethanol production for the first time. The efficiency of H2SO4, NaOH, steam explosion and the combination of these methods was compared in terms of delignification, saccharification efficiency and yield. The structural features of samples were characterized by SEM, XRD and FTIR. Results show H2SO4/steam explosion resulted in the highest hemicellulose reduction (98.5%) and cellulose recovery yield (99.9%). NaOH /steam explosion resulted in the highest delignification level (31.5%). Steam explosion exhibited the highest enzymatic digestibility of 98.8% and total product yield of glucose of 84.8%, an increase of 130.8% and 98.1% than that of untreated oak shell, respectively, which seemed to be the most effective for improving enzymatic saccharification. The results of structural features showed the structure and surface of shells were changed that is in favor of the following enzymatic hydrolysis.  相似文献   

16.
Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize (Zea mays L.), sunflower (Heliantus annuus L.), and soybean (Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.  相似文献   

17.
ABSTRACT

Sodium hydroxide is ideal in removing lignin from lignocellulosic materials at an effective operational cost. Two-stage NaOH pretreatment was employed herein to investigate lignin and hemicellulose removal and understand the morphology of Napier grass (Pakchong 1) (Pennisetum purpureum), which is considered lignocellulosic due to its high carbohydrate content. NaOH was used at different concentrations (0, 1, 2, 3, and 4 wt.%) and presoak times (1, 2, 3, and 4 h). The results demonstrated that 3 wt.% NaOH at 121°C without presoak resulted in 83.5% lignin removal, with a cellulose to lignin ratio of 3.0. Moreover, the treated samples showed cracking and irregular patterns at optimal conditions.  相似文献   

18.
In this study, we evaluated biohydrogen production of Clostridium butyricum and Rhodopseudomonas palustris by immobilized co-culture. Effects of free cells and immobilized cells, immobilized biomass ratio, sucrose concentration, and initial pH on hydrogen production were investigated. The immobilized co-culture can achieve high cumulative hydrogen volume yield (604 mL) as compared to free co-culture cumulative hydrogen volume (513 mL) while the initial sucrose concentration was 17.8 g/L. The optimum C. butyricum/R. palustris ratio was 1:10, yielding the highest cumulative hydrogen (728 mL). High sucrose concentration (above 35.6 g/L) would inhibit hydrogen production. The optimal initial pH value for hydrogen production of immobilized co-culture was 7.0 (cumulative hydrogen volume 830 mL).  相似文献   

19.
Citrus peel waste is a valuable lignocellulosic feedstock for bioethanol production due to its richness in fermentable sugars and low lignin content. Citrus peel contains two major value-added products: d-limonene and pectin. d-Limonene is widely used in food, cosmetics, and pharmaceutical industries. However, it acts as a microbial growth inhibitor for yeast during the fermentation process and hence it has to be removed prior to fermentation. Pectin is used as thickening agent, gelling agent, and stabilizer in the food industry. Since pectin increases the viscosity of the fermentation medium and makes fermentation troublesome, it has to be either extracted or degraded into galacturonic acid using pectinase enzyme. Thus, the removal and recovery of both D-limonene and pectin from citrus peel are essential for better fermentation. For bioethanol production, pretreatment plays a crucial role in the utilization of citrus peels since the reduction of d-limonene concentration to less than 0.05% is necessary. This review solely describes the potential of citrus waste for value added products such as d-limonene and pectin and the production of bioethanol from citrus peel waste is discussed in detail.  相似文献   

20.
Ethanol fuels: Energy security,economics, and the environment   总被引:6,自引:0,他引:6  
Problems of fuel ethanol production have been the subject of numerous reports, including this analysis. The conclusions are that ethanol: does not improve U.S. energy security; is uneconomical; is not a renewable energy source; and increases environmental degradation. Ethanol production is wasteful of energy resources and does not increase energy security. Considerably more energy, much of it high- grade fossil fuels, is required to produce ethanol than is available in the energy output. About 72% more energy is used to produce a gallon of ethanol than the energy in a gallon of ethanol. Ethanol production from corn is not renewable energy. Its production uses more non- renewable fossil energy resources in growing the corn and in the fermentation/distillation process than is produced as ethanol energy. Ethanol produced from corn and other food crops is also an unreliable and therefore a non-secure source of energy, because of the likelihood of uncontrollable climatic fluctuations, particularly droughts which reduce crop yields. The expected priority for corn and other food crops would be for food and feed. Increasing ethanol production would increase degradation of agricultural land and water and pollute the environment. In U.S. corn production, soil erodes some 18- times faster than soil is reformed, and, where irrigated, corn production mines water faster than recharge of aquifers. Increasing the cost of food and diverting human food resources to the costly and inefficient production of ethanol fuel raise major ethical questions. These occur at a time when more food is needed to meet the basic needs of a rapidly growing world population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号