首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The study of the heat transfer enhancement for the recycling double-pass V-corrugated solar air heaters, which implement the external recycle of flowing air, was investigated experimentally and theoretically. The comparison among different designs of V-corrugated, baffled and fins attached, and flat-plate collectors was made to show the device performance improvement with various operating parameters under the same working dimensions. The recycling double-pass V-corrugated device developed here was proposed in aiming to strengthen the convective heat-transfer coefficient and enlarge the heat transfer area. The error analysis of experimental results deviate by 0.85–2.46% from the theoretical predictions with the fairly good agreement, and both results show that the device performance of the recycling double-pass V-corrugated operation is better than those of the other configurations under various recycle ratios and mass flow rates. The suitable selections were obtained for operating recycling double-pass V-corrugated devices while considering with an economic viewpoint by both the collector efficiency enhancement and the power consumption increment.  相似文献   

2.
Artificially roughened solar air heater has been topic in research for the last 30 years. Prediction of heat transfer and fluid flow processes of an artificially roughened solar air heater can be obtained by three approaches: theoretical, experimental, and computational fluid dynamics (CFD). This article provides a comprehensive review of the published literature on the investigations of artificially roughened solar air heater. In the present article, an attempt has been made to present holistic view of various roughness geometries used for creating artificial roughness in solar air heater for heat transfer enhancement. This extensive review reveals that quite a lot of work has been reported on design of artificially roughened solar air heater by experimental approach but only a few studies have been done by theoretical and CFD approaches. Finally this article presents a comparative study of thermo-hydraulic performance of 21 different types of artificial roughness geometries attached on the absorber plate of solar air heater in terms of thermo-hydraulic performance parameter. Heat transfer and friction factor correlations developed by various investigators for different types of artificially roughened solar air heaters have also been reported in this article.  相似文献   

3.
In this work, the performance of a forced convection solar air heater was evaluated using using three packed bed absorber plate configurations and compared with flat absorber plate. The phase change material (paraffin wax) was packed in the pin-fin, trianglular and circular absorber plate configurations. The performance parameters such as, outlet air temperature, thermo-hydraulic efficiency, exergy efficiency and pressure drop were predicted and compared. The results showed that the packed bed absorber plate configurations using paraffin wax have higher outler air temperature in the range of 2–5°C with 3–40% higher thermo-hydraulic efficiency and 2–20% higher exergy efficiency when compared to flat absorber plate. However, the packed bed absorver plates have higher pressure drop when compared to flat absorber plate.  相似文献   

4.
The suitable design is the most important key to a cost-effective solar air heater. Although there are many techniques that have been proposed to improve the solar air heaters’ performance by means of different turbulence promoters, they cannot ensure a compromise between the cost and the effectiveness. The aim of this study is to find simple and tolerable solution to get rid of the inconvenience resulting from the widely adopted heat-transfer-enhancement techniques by providing an optimized solar air heater design. The proposed design consists of a slightly curved smooth flow channel with an absorber plate of convex shape. A prototype of a curved solar air heater of 1.28 m2 collector area was built and tested under summer outdoor conditions in Biskra (Algeria). The performance was evaluated in terms of thermal and effective efficiency for mass flow rates of 0.0172, 0.029, and 0.0472 kg/sm2. It is observed that the overall efficiency of this solar air heater is considerably higher in comparison with the efficiency range of the conventional smooth flat plate heaters reported in the literature for similar operating conditions.  相似文献   

5.
This paper outlines a complete review on modifications made on the absorber plate of solar air heaters in order to improve the turbulence and heat transfer rate, thereby efficiency. Corrugated sheets, fins, extended surfaces, wire mesh, porous medium, etc., are a few of the modifications used. Most of such alterations in the absorber plate resulted with an increase in efficiency but associated with drawback of increased pumping power due to raising friction factor. Pumping power is considered here as a predominant comparison parameters of various solar air heaters with different absorber plate in terms of effective efficiency.  相似文献   

6.
A passive flat-plate solar air collector was constructed in the laboratory of New and Renewable Energy in Arid Zones, Ouargla University, South East Algeria. The absorber of the passive flat-plate solar air collector was laminated with a thin layer of local sand. This acted as a thermal packed bed with a collecting area of 0.5 m2 (1 m × 0.5 m). Three series of experiments were performed. The first consisted of choosing the best sand brought from three different places of the Algerian desert. The second consisted of studying the effect of the thickness of the sand layer on the daily efficacy of the collector. The influence of the sand diameter was investigated in the third series. The experimental results showed that: All collectors covered with sand had higher efficiency than those without. It was noticed that, for a fixed mass of sand (given thickness of the sand layer), the improvement of the collector was inversely proportional to the sand particle diameters. The maximum efficiency approximates 62.1% for a particle diameter 0.063 mm, compared to 41.71% for a diameter 0.250 mm.The efficiency of the collector for a fixed particle diameter increases with the increase in the thickness of the sand layer. The collector with thickness sand layer 0.84 mm gave the best efficiency of 46.14% compared to 27.8% for 0.28 mm of thickness sand layer.  相似文献   

7.
Theoretical model of a solar photovoltaic integrated water-Lithium bromide absorption system is presented for domestic air conditioning. Surplus electrical energy from photovoltaic modules is used for charging the battery, which is utilized during the periods of zero or insufficient solar radiation. Minimum solar area required for each month is calculated and October is identified as the month requiring the highest area of photovoltaic arrays for a constant cooling load of 3.5 kW. The integrated system is found to be capable of sufficient amount of surplus electrical energy generation during both summer and winter months, with a daily excess of about 815 Ah of electrical energy on average over a complete calendar year. Designed system is found to be economically viable, having an energy payback period of 2.7 years.  相似文献   

8.
The performance of the designed tilted wick solar water distillation-cum-drying unit has been tested at water flow rates of 50 and 65 ml/min in the distillation unit. Effect of water flow rates on the heat transfer coefficients of distillation and drying unit for drying ginger has been evaluated. The energy and exergy efficiency of the distillation system have also been evaluated. Average distillates of 2.36 and 2.2 l/m2 were collected from the tilted wick solar still at flow rates of 50 and 65 ml/min, respectively. Large variation in convective and evaporative heat transfer coefficients of distillation unit has been observed at given water flow rates. Water flow rate in the distillation unit significantly affects the performance of the drying unit. Average convective heat transfer coefficients of 6.56 and 3.75 W/m2 oC have been observed for drying ginger at flow rates of 50 and 65 ml/min, respectively. Energy and exergy efficiency of the distillation unit have been found to be nearly 19% and 0.9%, respectively. Experimental uncertainty has also been evaluated for distillation and drying units. The distillate cost for the developed distillation-cum-drying unit is calculated as $0.03729/l along with dried ginger of about 2.5 kg/m2/day.  相似文献   

9.
A numerical model for simultaneous heat and mass transfer was developed for solar drying of spherical objects and the object considered is green peas. Solar collector outlet temperature is assumed as drying chamber temperature and justified through energy balance equations. Assumptions are imposed on heat and mass transfer governing equations without losing the physics of the problem. Discretization is performed by finite difference method with implicit scheme. To generalize, the governing equation and boundary conditions are non-dimensionalized. The set of finite difference equations was solved by Tridiagonal Matrix Algorithm and a computer code in MATLAB was developed to solve them. The drying curves showed two stages of drying, initial, and secondary drying stage. At all drying temperatures and drying time, the center moisture was maximum and it was minimum at the boundary. A percentage of 85.67 surface moisture content and 25.33% center moisture was eliminated in the first 1 hr at 348 K. The product should be dried up to 7.45, 4.74, and 3.74 hr at air drying temperatures of 318, 333, and 348 K respectively, to maintain 10% of the product’s initial moisture content. The result is compared with the experimental result from literature and they are found to be in good agreement.  相似文献   

10.
ABSTRACT

Large-scale greenhouse solar dryers have been used for drying various products and this type of dryer is usually equipped with LPG burner as auxiliary heater, which creates more operating cost. To overcome this problem, phase change material (PCM) thermal storage was proposed to substitute for the LPG burner. In this work, the performance of a large-scale greenhouse solar dryer integrated with a PCM as a latent heat storage for drying of chili was investigated. Experimental studies were conducted to compare the performance of this dryer with that of another large-scale greenhouse solar dryer without the PCM thermal storage and open sun drying. Chili with an initial moisture content of 74.7% (w.b.) was dried to a final moisture content of 10.0% (w.b.) in 2.5 days, 3.5 days, and 11 days using the solar dryer integrated with the PCM thermal storage, the solar dryer without the PCM thermal storage and the open sun drying, respectively. The performance of the solar dryer integrated with the PCM thermal storage was also evaluated using exergy analysis. The exergy efficiency of the drying room of the solar dryer integrated with the PCM thermal storage and the solar dryer without the PCM thermal storage for drying of chili was found to be 13.1% and 11.4%, respectively and the thermal storage helps to dry chili during adverse weather conditions. The results of exergy analysis implied that the exergy losses from the dryer with the PCM should be reduced.  相似文献   

11.
The paper presents the novel design of double glazing helical coil solar cavity receiver for solar thermal applications. Performance model has been developed for the experimental setup based on energy balance equations. The results obtained were compared with horizontal tube receiver for the same experimental setup. The result shows that the 87.96% improvement in the convective heat transfer coefficient for the double glazing helical coil solar cavity receiver. Maximum conversion efficiency achieved is 21% more than that would be obtained for horizontal tube receiver. This paper also investigates how the quality of vacuum degraded with the temperature of the glass cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号