首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract:  The Austral and Neotropical America (ANA) section of the Society for Conservation Biology includes a vast territory with some of the largest relatively pristine ecosystems in the world. With more than 573 million people, the economic growth of the region still depends strongly on natural resource exploitation and still has high rates of environmental degradation and biodiversity loss. A survey among the ANA section membership, with more than 700 members, including most of the section's prominent ecologists and conservationists, indicates that lack of capacity building for conservation, corruption, and threats such as deforestation and illegal trade of species, are among the most urgent problems that need to be addressed to improve conservation in the region. There are, however, strong universities and ecology groups taking the lead in environmental research and conservation, a most important issue to enhance the ability of the region to solve conservation and development conflicts .  相似文献   

3.
4.
Global Warming and the Species Richness of Bats in Texas   总被引:1,自引:0,他引:1  
General circulation models provide predictions for global climate under scenarios of increased atmospheric CO2. Climate change is expected to lead directly to changes in distributions of vegetation associations. Distribution of animals will also change to the extent that animals rely on vegetation for food or shelter. Bat species in Texas appear to be restricted, in part, by the availability of roosts. We used geographic information systems and the Holdridge vegetation-climate association scheme to model the effect of climate change on bat distributions and species richness in Texas. Habitat characteristics for each species were identified from the literature and included vegetation, topography, and availability of caves. We assumed caves and topography to be fixed relative to climate. Vegetation changes were predicted from the Holdridge vegetation-climate association scheme. The redistribution of bats following climate change was predicted based on the new locations of suitable habitat characteristics. Under conditions of global warming tropical forests were predicted to expand into Texas; tree-roosting bats were sensitive to this change in vegetation. Cavity-roosting bats were less affected by changes in vegetation, but, where response was predicted, ranges decline.  相似文献   

5.
The term hot cave is used to describe some subterranean chambers in the Neotropics that are characterized by constantly high ambient temperatures generated by the body heat of high densities of certain bat species. Many of these species have limited geographic ranges, and some occur only in the hot‐cave environment. In addition to the bats, the stable microclimate and abundant bat guano provides refuge and food for a high diversity of invertebrates. Hot caves have so far been described in the Caribbean and in a few isolated locations from Mexico to Brazil, although there is some evidence that similar caves may be present throughout the tropics. The existing literature suggests these poorly known ecosystems, with their unique combination of geomorphology and bat‐generated microclimate, are particularly sensitive to disturbance and face multiple threats from urbanization, agricultural development, mining, and tourism. Diversidad No Explorada y Potencial de Conservación de Cuevas Neotropicales Calientes  相似文献   

6.
高山植物对全球气候变暖的响应研究进展   总被引:1,自引:0,他引:1  
高山地区被认为是对全球气候变化最敏感的区域之一,气候变暖导致高山生境内生物与非生物环境因子发生不同程度的改变,从而引起高山植物从不同层面作出不同的变化或响应.综述了高山及亚高山高海拔生境内,植物从宏观生态系统层面到微观个体生理层面对全球气候变化进行响应的研究进展.植物由个体自身的生理及形态上产生不同响应,逐步经过"瀑布式上升效应(Cascade effects)",最后引起整个高山生态系统的转变.受局地差异性及物种差异性影响,生物多样性在不同高山地区呈现出或是增加或是减少的趋势;林线及植被向高纬度、高海拔地区扩张;植物间相互关系由协作转向中性乃至竞争;植物物候、繁殖、生物量生产、光合作用、年轮生长、营养结构等方面均呈现出不同的响应模式.这些从微观到宏观的不同响应模式,最终将引起高山生态系统在结构、功能上的改变,进而在很大范围上威胁到高山植物的生存与发展.最后提出该领域未来的研究重点.参147  相似文献   

7.
8.
吉林西部盐碱水田区全球变暖潜势研究   总被引:1,自引:0,他引:1  
汤洁  方天儒  赵仁竹  梁爽 《生态环境》2014,(8):1372-1377
为了探讨吉林西部土地整理工程对区域全暖所做贡献,基于实测的水田土壤温室气体数据,进行区域温室气体排放分析,为进一步评估水田开发对全球变暖的影响提供科学依据。以吉林省西部盐碱水田区为研究对象,将野外调查采样和小区试验相结合,采集了水田的0-30 cm表层土壤样品带回进行小区实验。在小区内挖取100 cm×100 cm×50 cm的坑,在土坑底部铺设塑料布后,将从采样点带回的土壤填进坑内灌水,种植水稻,6块样地分别为不同开发年限,其处置模式与前郭当地的水肥管理相同,样地周围挖掘了排水渠。通过静态箱-气相色谱法监测水稻生长期土壤所释放的温室气体 CH4,N2O 和CO2,计算水稻不同生长时期温室气体排放量及贡献率,估算研究区的区域变暖潜势(GWP),结合30年水田面积变化加权法分析温室气体GWP贡献率。结果表明:水田生长期温室气体排放总量(以CO2气体计)随着开发年限的增加呈递增趋势,水田开发过程中CO2、CH4和N2O各时期温室气体排放的贡献率都有一定变化,CO2气体排放贡献率占主导地位在80%左右,CH4的贡献率16.69%-20.39%,是N2O的14-22倍,水田CH4气体的排放对研究区综合温室效应有较大贡献,水田开发初期N2O气体贡献率较成熟水田相比较高。在水稻生长旺盛期CO2气体贡献率下降明显,CH4气体贡献率显著升高,N2O气体贡献率变化不大,在返青期和成熟期CH4和N2O 2种气体贡献率均较小,其中,除成熟期外新开发水田的CH4气体贡献率均高于成熟水田,在水稻生长发育较快速的分蘖期、拔节孕穗期和抽穗开花期,CO2气体贡献率下降且降幅明显,该阶段CH4气体对温室效应的贡献比重加大,远高于N2O气体。在水稻成熟期,3种温室气体的贡献率与其他时期相比发生较大变化,CH4比 N2O 略有优势,CO2所占比例恢复至95%。?  相似文献   

9.
10.
Conservation of Vascular Epiphyte Diversity in Mexican Coffee Plantations   总被引:1,自引:0,他引:1  
Abstract:  Coffee plantations have replaced many lower-montane forests in the Neotropics, and ongoing intensification is converting traditional polycultures with a variety of shade trees to plantations with no or monospecific shade trees. To evaluate the impact of coffee cultivation on epiphyte diversity, I surveyed vascular epiphytes on shade trees in nine different coffee plantations and compared records with those in four natural forests in central Veracruz, Mexico. Eighty-nine species occurred in coffee plantations, and 104 species occurred in natural forests. The number of epiphytic species in traditional polycultures with old shade trees, mostly of the genus Inga , was similar to that in forests, but plantations with small trees and sparse shade hosted fewer epiphytes than those with large trees. Epiphyte communities were, however, more homogeneous in coffee plantations than in forests, possibly because of a drier microclimate and the lack of large and long-lived trees. These results demonstrate the value of traditional polycultures for epiphyte diversity, show the importance of conserving large shade trees, and suggest that these coffee systems may not be suitable for all epiphytes.  相似文献   

11.
12.
13.
14.
15.
16.
This article analyzes the welfare effects of climatic variability from global warming in a stochastic economic growth model and shows that these may be significant. An empirical analysis indicates that the effects of climate change with variability are greater than the corresponding effects without it. Effects with variability are also shown to be more sensitive to variations in the rate of climate change.  相似文献   

17.
Abstract:  The effects of climate change and habitat destruction and their interaction are likely to be the greatest challenge to animal and plant conservation in the twenty-first century. We used the world's smallest butterfly, the Sinai baton blue ( Pseudophilotes sinaicus ), as an exemplar of how global warming and human population pressures may act together to cause species extinctions. We mapped the entire global range of this butterfly and obtained extensive data on the intensity of livestock grazing. As with an increasing number of species, it is confined to a network of small habitat patches and is threatened both by indirect human-induced factors (global warming) and by the direct activities of humans (in this case, livestock grazing and collection of medicinal plants). In the absence of global warming, grazing, and plant collection, our model suggested that the butterfly will persist for at least 200 years. Above a threshold intensity of global warming, the chance of extinction accelerated rapidly, implying that there may be an annual average temperature, specific to each endangered species, above which extinction becomes very much more likely. By contrast, there was no such threshold of grazing pressure—the chance of extinction increased steadily with increasing grazing. The impact of grazing, however, decreased with higher levels of year-to-year variation in habitat quality. The effect of global warming did not depend on the future level of grazing, suggesting that the impacts of global warming and grazing are additive. If the areas of habitat patches individually fall below certain prescribed levels, the butterfly is likely to go extinct. Two patches were very important for persistence: if either were lost the species would probably go extinct. Our results have implications for the conservation management of all species whose habitats are at risk because of the direct activities of humans and in the longer term because of climate change.  相似文献   

18.
Globally, the East Asian monsoon region is one of the richest environments in terms of biodiversity. The region is undergoing rapid human development, yet its river ecosystems have not been well studied. Global warming represents a major challenge to the survival of species in this region and makes it necessary to assess and reduce the potential consequences of warming on species of conservation concern. We projected the effects of global warming on stream insect (Ephemeroptera, Odonata, Plecoptera, and Trichoptera [EOPT]) diversity and predicted the changes of geographical ranges for 121 species throughout South Korea. Plecoptera was the most sensitive (decrease of 71.4% in number of species from the 2000s through the 2080s) order, whereas Odonata benefited (increase of 66.7% in number of species from the 2000s through the 2080s) from the effects of global warming. The impact of global warming on stream insects was predicted to be minimal prior to the 2060s; however, by the 2080s, species extirpation of up to 20% in the highland areas and 2% in the lowland areas were predicted. The projected responses of stream insects under global warming indicated that species occupying specific habitats could undergo major reductions in habitat. Nevertheless, habitat of 33% of EOPT (including two‐thirds of Odonata and one‐third of Ephemeroptera, Plecoptera, and Trichoptera) was predicted to increase due to global warming. The community compositions predicted by generalized additive models varied over this century, and a large difference in community structure in the highland areas was predicted between the 2000s and the 2080s. However, stream insect communities, especially Odonata, Plecoptera, and Trichoptera, were predicted to become more homogenous under global warming. Impacto Potencial del Calentamiento Global sobre la Diversidad y la Distribución de Insectos de Arroyo en Corea del Sur  相似文献   

19.
双台河口自然保护区滨海湿地的维管束植物区系特征   总被引:1,自引:0,他引:1  
辽宁双台河口自然保护区滨海湿地维管束植物区系中有56科117属155种维管束植物,有蔷薇科、菊科、禾本科、蓼科、豆科、唇形科、香蒲科、眼子菜科、莎草科等9大科51属76种,9大科的属数、种数占区系总属数和总种数的43.59%、49.03%;区系内小科、单种属多,说明科、属的分化程度较高。区系中有15种盐生植物、25种水生植物、34种湿生植物、79种中生植物和4种旱生植物,湿地植被的优势种和建群种均为盐生植物、水生植物和湿生植物,这表明保护区内滨海湿地植被的形成不仅受海水、土壤盐渍化影响,更受辽河径流淡水的影响。区系中有地面芽植物、地下芽植物72种,占总种数的46.45%,说明冷湿气候对保护区内滨海湿地植被的形成有重要作用。区系中有世界分布属31属,占区系总属数的26.50%,这反映了湿地植被的隐域性;有温带分布属57属、热带分布属23属,分别占区系总属数的48.72%、19.66%,这分别表明保护区滨海湿地植被具有一定的地带性特征,雨量充沛、冬季气温较高的海洋性气候特征对湿地中起源于热带的维管束植物生存限制较小。  相似文献   

20.
Abstract: Climate‐change scenarios project significant temperature changes for most of South America. We studied the potential impacts of predicted climate‐driven change on the distribution and conservation of 26 broad‐range birds from South America Cerrado biome (a savanna that also encompass tracts of grasslands and forests). We used 12 temperature or precipitation‐related bioclimatic variables, nine niche modeling techniques, three general circulation models, and two climate scenarios (for 2030, 2065, 2099) for each species to model distribution ranges. To reach a consensus scenario, we used an ensemble‐forecasting approach to obtain an average distribution for each species at each time interval. We estimated the range extent and shift of each species. Changes in range size varied across species and according to habitat dependency; future predicted range extent was negatively correlated with current predicted range extent in all scenarios. Evolution of range size under full or null dispersal scenarios varied among species from a 5% increase to an 80% decrease. The mean expected range shifts under null and full‐dispersal scenarios were 175 and 200 km, respectively (range 15–399 km), and the shift was usually toward southeastern Brazil. We predicted larger range contractions and longer range shifts for forest‐ and grassland‐dependent species than for savanna‐dependent birds. A negative correlation between current range extent and predicted range loss revealed that geographically restricted species may face stronger threat and become even rarer. The predicted southeasterly direction of range changes is cause for concern because ranges are predicted to shift to the most developed and populated region of Brazil. Also, southeastern Brazil is the least likely region to contain significant dispersal corridors, to allow expansion of Cerrado vegetation types, or to accommodate creation of new reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号