首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A radon survey has been carried out around the town of Niska Banja (Serbia) in a region partly located over travertine formations, showing an enhanced level of natural radioactivity. Outdoor and indoor radon concentrations were measured seasonally over the whole year, using CR-39 diffusion type radon detectors. Outdoor measurements were performed at 56 points distributed over both travertine and alluvium sediment formations. Indoor radon concentrations were measured in 102 living rooms and bedrooms of 65 family houses. In about 50% of all measurement sites, radon concentration was measured over each season separately, making it possible to estimate seasonal variations, which were then used to correct values measured over different periods, and to estimate annual values. The average annual indoor radon concentration was estimated at over 1500 Bq/m3 and at about 650 Bq/m3 in parts of Niska Banja located over travertine and alluvium sediment formations, respectively, with maximum values exceeding 6000 Bq/m3. The average value of outdoor annual radon concentration was 57 Bq/m3, with a maximum value of 168 Bq/m3. The high values of indoor and outdoor radon concentrations found at Niska Banja make this region a high natural background radiation area. Statistical analysis of our data confirms that the level of indoor radon concentration depends primarily on the underlying soil and building characteristics.  相似文献   

2.
Hot mineral springs in Jordan are very attractive to people who seek physical healing but they are unaware of natural radioactive elements that may be contained in the hot mineral water. The activities of the natural radioactive isotopes were measured and the concentrations of the parents of their natural radioactive series were calculated. The measured radionuclides were 234Th, 226Ra, 214Pb, 214Bi, 228Ac, 228Th, 212Pb, 212Bi and 208Tl. In addition the activities of 235U and 40K were measured. The activities ranged from 0.14 to 34.8 Bq/l, while the concentrations of parent uranium and thorium isotopes ranged from 3.0 x 10(-3) to 0.59 mg/l. The results were compared with those for drinking water.  相似文献   

3.
Continuous measurement of hourly concentrations of 212Pb attached to aerosol particles was carried out during the whole year 2000 in the outdoor air of Milan (Italy). An improved experimental method based on on-line alpha spectroscopy during atmospheric particulate matter sampling allowed the contemporary determination of 212Pb and 214Bi through the deconvolution of the alpha energy spectral distribution analysis. The 212Pb hourly concentrations were about 100 times lower than 214Bi but showed a similar characteristic diurnal time trend. However, the influence of meteorological parameters such as rain and wind was more evident in 212Pb than in 214Bi concentrations. The 212Pb average annual concentration was 0.090 +/- 0.060 Bq/m3 with daily mean concentration varying from 0.013 to 0.333 Bq/m3.  相似文献   

4.
Field in situ gamma radiation exposure rates and laboratory measured radioactivity contents of 1500 Spanish soils were compared. The main objective was to determine if published theoretically derived conversion factors would yield accurate quantitative activity concentration (Bq kg(-1)) for the data carried out in different surveys developed by our laboratory during the last ten years. The in situ external gamma dose rate results were compared to laboratory gamma analysis of soils samples gathered from each site, considering the concentrations of seven radionuclides: 40K, 214Pb, 214Bi, 212Bi, 212Pb, 208Tl and 228Ac. The coefficient of correlation found between these variables indicate a good relationship. A discussion of the factors contributing to the uncertainties as well as measurement procedure are also given in this paper.  相似文献   

5.
The measurement campaigns have been done in the rural community of Niska Banja, a spa town located in southern Serbia, to evaluate population exposure to natural radioactivity. After a screening survey in 200 houses, annual radon and thoron concentrations were measured in 34 houses, and in 2004 a detailed investigation was carried out at six houses with elevated indoor radon concentrations. The paper presents the results of these detailed measurements. The complementary techniques were applied to determine radon and thoron concentrations in indoor air, in soil gas, radon exhalation from soil, soil permeability, and indoor and outdoor gamma doses. Soil and water samples were collected and analysed in the laboratory. Indoor radon and thoron concentrations were found to be more than 1kBqm(-3) and 200Bqm(-3), respectively. Extremely high concentrations of soil-gas radon (>2000kBqm(-3)) and radon exhalation rates (1.5mBqm(-2)s(-1)) were observed. These results will be utilised to set up the methodology for a more systematic investigation.  相似文献   

6.
High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.  相似文献   

7.
During a one year period, from Jan. 2002 up to Dec. 2002, approximately 130 air samples were analyzed to determine the atmospheric air activity concentrations of short- and long-lived (222Rn) decay products 214Pb and 210Pb. The samples were taken by using a single-filter technique and gamma-spectrometry was applied to determine the activity concentrations. A seasonal fluctuation in the concentration of 214Pb and 210Pb in surface air was observed. The activity concentrations of both radionuclides were observed to be relatively higher during the winter/autumn season than in spring/summer season. The mean activity concentration of 214Pb and 210Pb within the whole year was found to be 1.4+/-0.27 Bq m(-3) and 1.2+/-0.15 mBq m(-3), respectively. Different 210Pb:214Pb activity ratios during the year varied between 1.78 x 10(-4) and 1.6 x 10(-3) with a mean value of 8.9 x 10(-4) +/- 7.6 x 10(-5). From the ratio between the activity concentrations of the radon decay products 214Pb and 210Pb a mean residence time (MRT) of aerosol particles in the atmosphere of about 10.5+/-0.91 d could be estimated. The seasonal variation pattern shows relatively higher values of MRT in spring/summer season than in winter/autumn season. The MRT data together with relative humidity (RH), air temperature (T) and wind speed (WS), were used for a comprehensive regression analysis of its seasonal variation in the atmospheric air.  相似文献   

8.
The results of radon activity recorded in 70 dwellings of Nurpur area, Kangra district, Himachal Pradesh, India are reported. LR-115 Type 2 films in the bare mode were exposed for four seasons of three months each covering a period of one year for the measurement of indoor radon levels. The calibration constant of 0.020 tracks cm(-2) d(-1) per Bq m(-3) has been used to express radon activity in Bq m(-3). The annual average indoor radon concentrations in 17 different villages of the area are found to vary from 168+/-46 to 429+/-71. Most of the indoor radon values lie in the range of action levels (200-600 Bq m(-3)) recommended by International Commission on Radiological Protection.  相似文献   

9.
Indoor radon survey and gamma activity measurements in soil samples were carried out in the Giresun province (Northeastern Turkey). The result of analysis of variance showed a relationship between indoor radon and radium content in soil (R(2)=0.54). It was found that indoor radon activity concentration ranged from 52 to 360 Bq m(-3) with an average value of 130 Bq m(-3). A model built by BEIR VI was used to predict the number of lung cancer deaths due to indoor radon exposure. It was found that indoor radon is responsible for 8% of all lung cancer deaths occurring in this province. (137)Cs activity concentration was measured 21 years after the Chernobyl accident. The results showed that (137)Cs activity concentration ranged from 41 to 1304 Bq kg(-1) with an average value of 307 Bq kg(-1). The indoor radon results and the geology of the studied area were discussed. Annual effective doses to the both radionuclides of natural origin and (137)Cs were estimated.  相似文献   

10.
A study on natural radiation exposure in different realistic living rooms   总被引:1,自引:0,他引:1  
In the first part of the paper, the factors affecting 222Rn properties in 25 different realistic living rooms (with low ventilation rates) of different houses in El-Minia City (Upper Egypt) have been studied; they included the activity concentration of 222Rn gas (C(o)), the unattached fraction (f(p)) of 218Po and 214Pb, the unattached potential alpha energy concentration (PAEC) and the equilibrium factor (F). The activity distributions of unattached 218Po and 214Pb as well as for the PAEC were determined. With a dosimetric model calculation [ICRP, 1994b. Human Respiratory Tract Model For Radiological Protection. Pergamon Press, Oxford. ICRP Publication 66] the total deposition fraction of unattached 218Po and 214Pb in human respiratory tract was evaluated to determine the total equivalent dose. An electrostatic precipitation method and a wire screen diffusion battery technique were both employed for the determination of 222Rn gas concentration and its unattached decay products, respectively. The mean activity concentration of 222Rn gas (C(o)) was found to be 110+/-20 Bq m(-3). The mean unattached activity concentrations of 218Po and 214Pb were found to be 0.6 and 0.35 Bq m(-3), respectively. A mean unattached fraction (f(p)) of 0.09+/-0.01 was obtained at a mean aerosol particle concentration (Z) of (2.9+/-0.23) x 10(3)cm(-3). The mean equilibrium factor (F) was determined to be 0.31+/-0.02. The mean PAEC of unattached 218Po and 214Pb was found to be 8.74+/-2.1 Bq m(-3). The activity distributions of 218Po and 214Pb show mean activity median diameters (AMD) of 1.5 and 1.85 nm with mean geometric standard deviations (SD) of 1.33 and 1.45, respectively. The mean activity distribution of the PAEC shows an AMD of 1.65 nm with a geometric standard deviation of 1.25. At a total deposition fraction of about 97% the total equivalent dose to the lung was determined to be about 133 microSv. The second part of this paper deals with a study of natural radionuclide contents of samples collected from the building materials of the rooms under investigations in part one. Analyses were performed in Marinelli beakers with a gamma multichannel analyzer equipped with a NaI(Tl) detector. The samples revealed the presence of the uranium-radium and thorium radioisotopes as well as 40K. Nine gamma-lines of the natural radioisotopes corresponding to 212Pb, 214Pb, 214Bi, 228Ac, 40K and 208Tl were detected and measured. The activity concentrations of 226Ra, 232Th and 40K were determined with mean activity concentrations of 58+/-19, 31+/-11 and 143+/-62 Bq kg(-1), respectively. These activities amount to a radium equivalent (Ra(eq)) of 113 Bq kg(-1) and to a mean value of external hazard index of 0.31.  相似文献   

11.
Using gamma-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides (226)Ra, (222)Rn, (214)Bi, (228)Ac, (212)Pb, (212)Bi and (40)K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. gamma-spectroscopy measurements in sand gave Ra concentration ranging from 4.2+/-0.4 to 60.8+/-2.2 Bq kg(-1) and Ra concentration equivalents from 8.8+/-1.0 to 74.3+/-9.2 Bq kg(-1). The highest Ra concentration was in gray and white cement having the values 73.2+/-3.0 and 76.3+/-3.0 Bq kg(-1), respectively. Gravel results showed Ra concentration between 20.2+/-1.0 and 31.7+/-1.4 Bq kg(-1) with an average of 27.5+/-1.3 Bq kg(-1). Radon concentration in paint was determined by CR-39 detector. In sand, the average (222)Rn concentration ranged between 291+/-69 and 1774+/-339 Bq m(-3) among the sandbanks with a total average value of 704+/-139 Bq m(-3). For gravel, the range was found to be from 52+/-9 to 3077+/-370 Bq m(-3) with an average value of 608+/-85 Bq m(-3). Aerial and mass exhalation rates of (222)Rn were also calculated and found to be between 44+/-7 and 2226+/-267 mBq m(-2)h(-1), and between 0.40+/-0.07 and 20.0+/-0.3 mBq kg(-1)h(-1), respectively.  相似文献   

12.
The aim of this work was to make a comparison of indoor radon concentrations in dwellings and in soil air in the area of two geological formations in the Suwa?ki region (Poland). The mean arithmetic airborne concentration was found to be the highest (301 Bq m (-3)) in the basements of buildings in the gravel and sand areas, whereas in the boulder clay areas it reached 587 Bq m (-3). Out of 54 measurements of radon concentrations performed at the ground floor, in eight cases concentrations were found to exceed 200 Bq m (-3) - permissible radon level in new-built houses in Poland and in three cases these values were even higher than 400 Bq m (-3). The highest radon levels were noted in houses with earthen basement floors and with direct entrance from the basement to rooms or kitchens. The mean arithmetic radon concentration in the soil air in the sandy and gravel formations was 39.7 kBq m (-3) and in clay formation it was 26.5 kBq m (-3). Higher radon levels were also found in the water obtained from household wells reaching 8367 Bq m (-3) as compared with tap water (2690 Bqm (-3)). The mean indoor concentration for the whole area under study was found to be 169.4 Bq m (-3), which is higher than the mean value for Poland (49.1 Bq m (-3)) by a factor of 3.5.  相似文献   

13.
This paper reports on radon concentrations in dwellings from fifty different locations of India. The incorporated data were obtained using the passive solid state nuclear track detector technique. The estimated geometric mean value for India is 67.1 Bq m(-3). Chuadanga in Bangladesh had the lowest observed indoor radon concentration of 27.3 Bq m(-3) and Una in the northern part of India had the highest concentration of 281.5 Bq m(-3). This paper discusses the national geometrical mean value in terms of the national geometric mean values of other countries and also in terms of the geological influence. The estimated indoor radon levels are compared with the indoor radon levels as recommended by the International Commission on Radiation Protection (ICRP). It was observed that there are several locations in India where dwellings have higher indoor radon levels than the ICRP recommended value and requires some sort of intervention from regulating authorities. The mean value for indoor radon level given in the report of UNSCEAR 2000 for India needs to be revised.  相似文献   

14.
Specific activities of the natural radionuclides (238)U, (226)Ra, (232)Th and (40)K were measured by means of gamma-ray spectrometry in surface soil samples collected from the city of Ptolemais, which is located near lignite-fired power plants. The mean activity values for (238)U, (226)Ra, (232)Th and (40)K were found to be 42+/-11, 27+/-6, 36+/-5 and 496+/-56 Bq kg(-1), respectively. These values fall within the range of typical world and Greek values for soil. The indoor radon concentration levels, which were also measured in 66 dwellings by means of SSNTD, ranged from 12 to 129 Bq m(-3), with an average value of 36+/-2 Bq m(-3). This value is close to world and Greek average values for indoor radon concentrations. The total effective dose due to outdoor external irradiation of terrestrial origin and to indoor internal irradiation from the short-lived decay products of (222)Rn was estimated to be 1.2 mSv y(-1) for adults, which is lower than the global effective dose due to natural sources of 2.4 mSv y(-1).  相似文献   

15.
Results for naturally occurring 7Be, 210Pb, 40K, 214Bi, 214Pb, 212Pb, 228Ac and 208Tl and anthropogenic 137Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The 212Pb and 208Tl, 214Bi and 214Pb, 7Be and 210Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The 7Be and 210Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the 7Be, 210Pb, 40K and 137Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.  相似文献   

16.
Measurements of indoor radon concentrations were performed in 28 low-rise houses and 30 apartments in Patras area from December 1996 to November 1997, using nuclear track detectors. The investigation was focused on the effects of season and floor number, as well as on the existence of a basement in low-rise houses on indoor radon levels. It was found that the differences in mean radon concentrations between adjacent seasons, in a number of 61 selected sampling sites distributed in 28 houses, were statistically significant. As expected, a maximum was found in winter and a minimum in summer. The differences in mean radon concentration on different floors of the same houses were also statistically significant and followed a linear decrease from underground to 2nd floor. In addition, indoor radon concentrations in the ground floor were found to be influenced by the existence or not of a basement. The average annual radon concentration was found to be 41 Bq m(-3) for the houses, 28 Bq m(-3) for the apartments and 38 Bq m(-3) for all the dwellings. These values lead to an average effective dose equivalent of 1.1, 0.7 and 0.9 mSv y(-1), respectively. Residents living on the underground in low-rise houses, during winter, where the average effective dose equivalent is 2.1 mSv y(-1), attain the higher risk.  相似文献   

17.
Radon (Rn(222)) levels in an indoor atmosphere of a multi-storey building at Mumbai have been measured for one year covering all the four seasons. Monitoring was carried out using the time-integrated passive detector technique, using Kodak-115 type Solid State Nuclear Track Detector (SSNTD) films of 2.5x2.5 cm size. Measured indoor radon levels showed a decreasing trend with height with concentration ranging from 41 Bq m(-3) at ground floor level to 15 Bq m(-3) at 19th floor level. Using the dose conversion factors, the inhalation dose due to breathing of radon gas is estimated to be 1.03 mSv y(-1) at the ground floor to 0.38 mSv y(-1) at the 19th floor level. Measured indoor radon concentrations on each floor were compared with the computed values using a mathematical model. The agreement between measured values and calculated values of indoor concentrations at different floors was very good within the limitations of various field parameter values.  相似文献   

18.
The concentrations of 222Rn (radon) and its progeny with surrounding environmental gamma-dose rates were measured simultaneously inside and outside of buildings at 10 locations around Taipei and Hualien in Taiwan. For summer radon in Taiwan, indoor concentrations were estimated to be about 20 Bq m(-3) with about 90 nSv h- of environmental gamma, and outdoors, about 10 Bq m(-3) with about 70 nSv h(-1). The equilibrium factors were calculated to be 0.2-0.3 indoors and 0.3-0.4 outdoors. Indoor radon concentration had a weak positive correlation with gamma-dose rate. Since there is a possibility that high radon concentrations exist indoors during the cool season in Taiwan because of extremely low ventilation rates in the dwellings, a winter survey in January through February will be needed for future estimation of the annual effective dose.  相似文献   

19.
In this work we present the results of a 2-year survey of indoor radon variations in four cities of Lahijan, Ardabil, Sar-Ein and Namin in North and Northwest Iran. We used both passive and active measurements by solid state nuclear track detectors (SSNTDs) with CR-39 polycarbonate and PRASSI Portable radon Gas Surveyor. A total of 1124 samplers in Lahijan, Ardabil, Sar-Ein and Namin were installed. Sampling frequency was seasonal and sampling locations were randomly chosen based on dwelling structures, floors, geological formations, elevation and temperature variation parameters. For quality assurance, 281 active measurements and double sampling were carried out. Based on our results and the results of previous surveys, Ardabil and Lahijan have the second and third highest radon concentration in Iran, respectively (Ramsar is first). The average radon concentration during the year in Lahijan, Ardabil, Sar-Ein and Namin were 163, 240, 160 and 144 Bq/m(3) with medians of 160, 168, 124 and 133 Bq/m(3), respectively. These concentrations give rise to annual effective doses of 3.43 mSv/y for Lahijan and 5.00 mSv/y for Ardabil. The maximum recorded concentration was 2386 Bq/m(3) during winter in Ardabil and the minimum concentration was 55 Bq/m(3) during spring in Lahijan. Relationships between radon concentration and building materials and room ventilation were also studied. The dosimetry calculations showed that these four cities could be categorized as average natural radiation zones. The correlation coefficients relating warm and cold season radon variation data were obtained.  相似文献   

20.
The activity concentrations and fluxes of natural (210Pb, 210Po) and anthropogenic (239,240Pu, 137Cs) radionuclides have been determined in the different water masses crossing the Strait of Gibraltar. New data have been gathered during four multidisciplinary and multinational sampling campaigns, performed between 1997 and 1999 within the framework of the CANIGO-FLUGIST Project. Mean activity concentrations of 210Po (1.53+/-0.34 Bq m(-3), n = 30) and 210Pb (1.16+/-0.50 Bq m(-3), n = 31) in the Atlantic water entering the Mediterranean basin are about double those measured in the Mediterranean outflow, namely 0.84+/-0.34 Bq m(-3) (n = 22) for 210Po and 0.66+/-0.34 Bq m(-3) (n = 22) for 210Pb. The opposite trend is observed for 231,240Pu, with average concentrations of 9.9+/-3.0 mBq m(-3) (n = 29) in the incoming Atlantic flow and 22.0+/-3.0 mBq m(-3) (n = 22) in the outpouring Mediterranean water. In the case of 137Cs, the same concentrations were quantified in the waters moving inwards (2.52+/-0.28 Bq m(-3), n = 27) and outwards (2.14+/-0.52 Bq m(-3), n = 21) from the Mediterranean Sea. On this basis, the Mediterranean basin experiences a net annual input flux of 14 TBq of 210Pb and 19 TBq of 210Po, and a net annual loss of 0.34 TBq of 239,240Pu, while--at present--137Cs input and output fluxes appear to be balanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号