首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

2.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Concentrations of biphenyl, fluorene, phenanthrene and pyrene were added to soil samples in order to investigate the anaerobic degradation potential of PAHs under denitrifying conditions. A mixed population of microorganisms obtained from a paddy soil was incubated for 20 days in anaerobic conditions in the presence of soil alone or with nitrate, adding, as electron donors, PAHs and, in some samples, glucose or acetate. At regular time intervals oxidation-reduction potential, PAHs concentration, microbial ATP and nitrate concentration into the solution were measured. Degradation trends for each hydrocarbon are similar under all conditions, indicating that the molecular conformation prevails over other parameters in controlling the degradation. Poor degradation results were obtained when PAHs were the only organic matter available for the inoculum, thus confirming the recalcitrance to degradation of these compounds. Biodegradation was influenced by the addition of other carbon sources. As better degradation results were generally obtained when acetate or glucose were added, the hypothesis of a co-metabolic enhancement of PAH biodegradation seems likely. Thus, anaerobic biodegradation of PAHs studied, biphenyl, fluorene, phenanthrene and pyrene, seems to be possible both through fermentative and respiratory metabolism, provided that low molecular weight co-metabolites and suitable electron acceptors (nitrate) are present.  相似文献   

4.
Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture   总被引:39,自引:0,他引:39  
Yuan SY  Wei SH  Chang BV 《Chemosphere》2000,41(9):1463-1468
We investigated the potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) by an aerobic mixed culture utilizing phenanthrene as its carbon source. Following a 3-5 h post-treatment lag phase, complete degradation of 5 mg/l phenanthrene occurred within 28 h (optimal conditions determined as 30 degrees C and pH 7.0). Phenanthrene degradation was enhanced by the individual addition of yeast extract, acetate, glucose or pyruvate. Results show that the higher the phenanthrene concentration, the slower the degradation rate. While the mixed culture was also capable of efficiently degrading pyrene and acenaphthene, it failed to degrade anthracene and fluorene. In samples containing a mixture of the five PAHs, treatment with the aerobic culture increased degradation rates for fluorene and anthracene and decreased degradation rates for acenaphthene, phenanthrene and pyrene. Finally, it was observed that when nonionic surfactants were present at levels above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited by the addition of Brij 30 and Brij 35, and delayed by the addition of Triton X100 and Triton N101.  相似文献   

5.
Guieysse B  Viklund G 《Chemosphere》2005,59(3):369-376
A method based on UV-irradiation in organic solvent followed by transfer of the remaining pollutants into silicone oil for subsequent biodegradation in a biphasic system inoculated with a phenanthrene degrading Pseudomonas sp. was tested for the treatment of various mixtures of PAHs. Acetone was first selected as the most suitable solvent compared to methanol, acetonitrile and silicone oil for the removal of pyrene and phenanthrene. The sequential treatment was then applied to the treatment of a mixture of fluorene, phenanthrene, anthracene, fluoranthrene, pyrene, benzo(a)anthracene and benzo(a)pyrene in acetone. These compounds were photodegraded in the following order of initial removal rates (mg l(-1) d(-1)): benzo(a)pyrene (7.8) > anthracene (5.0) > benzo(a)anthracene (2.5) > fluoranthrene (1.8) > pyrene (1.5) > phenanthrene (1.2) > fluorene (0.2). UV-treatment allowed complete removal of, anthracene, benzo(a)anthracene and benzo(a)pyrene and removals of 63% of pyrene and 37% of fluorene after 434 h or irradiation. The subsequent biological treatment removed the remaining phenanthrene and fluorene by 100% and 90%, respectively, after 790 h of cultivation. Although less efficient due to the presence of interfering compounds, the UV-biological treatment of a soil extract allowed a 63% removal of the seven PAHs named above. Microbial growth did not occur when the pollutants were directly supplied to the microorganism showing that biphasic systems reduced the toxicity effects cause by mixtures of PAHs at high concentrations. This study demonstrates the potential of selective UV treatment of high molecular weight PAHs followed by biological treatment of the low molecular weight species in biphasic systems.  相似文献   

6.
Degradation of nonylphenol by anaerobic microorganisms from river sediment   总被引:17,自引:0,他引:17  
Chang BV  Yu CH  Yuan SY 《Chemosphere》2004,55(4):493-500
We investigated the degradation of nonylphenol monoethoxylate (NP1EO) and nonylphenol (NP) by anaerobic microbes in sediment samples collected at four sites along the Erren River in southern Taiwan. Anaerobic degradation rate constants (k1) and half-lives (t1/2) for NP (2 microg/g) ranged from 0.010 to 0.015 1/day and 46.2 to 69.3 days respectively. For NP1EO (2 microg/g), the ranges were 0.009-0.014 1/day and 49.5-77.0 days respectively. Degradation rates for NP and NP1EO were enhanced by increasing temperature and inhibited by the addition of acetate, pyruvate, lactate, manganese dioxide, ferric chloride, sodium chloride, heavy metals, and phthalic acid esters. Degradation was also measured under three anaerobic conditions. Results show the high-to-low order of degradation rates to be sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the degradation of NP and NP1EO, with sulfate-reducing bacteria being a major component of the river sediment.  相似文献   

7.
This study investigated the effects of various factors on the anaerobic degradation of nonylphenol (NP) in soil. The results show that the optimal pH for NP degradation was 7.0 and that the degradation rate was enhanced when the temperature was increased. The addition of compost enhanced NP degradation. The individual addition of the electron donors lactate, acetate, and pyruvate inhibited NP degradation. The high-to-low order of NP degradation rates under three anaerobic conditions was sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the anaerobic degradation of NP, with sulfate-reducing bacteria being a major component of the soil. Of the anaerobic strains isolated from the soil samples, strain AT3 expressed the best ability to biodegrade NP.  相似文献   

8.
El Nemr A  Abd-Allah AM 《Chemosphere》2003,52(10):1711-1716
The residues of seven polycyclic aromatic hydrocarbons (PAHs) pollutants in microlayer and subsurface seawater samples collected from Alexandria coast, Egypt, were analyzed by gas chromatography–electron-impact mass spectrometry-selected ion monitoring mode (GC–MS-SIM). The pollutants studied were, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene and benzo[a]pyrene. Total PAH levels in microlayer ranged from 103 to 523 ng/l, while it ranged in subsurface samples from 13 to 120 ng/l. The Western Harbor location recorded the highest level of PAHs pollutant over all the other location for both subsurface and microlayer waters. The two major PAHs in microlayer water at the Western Harbor were fluorene and phenanthrene, making up 27% and 20% of the total PAHs, while the two major PAHs in subsurface water at the Eastern Harbor were phenanthrene and fluoranthene recording up 21% each of the total PAHs. The total PAH levels were generally in the nano-gram per liter for microlayer and subsurface seawater samples. The dominant PAHs in both subsurface and microlayer samples were fluoranthene, pyrene and benzo[a]pyrene. The microlayer enrichment factor at Alexandria’s Mediterranean coast was ranged from 29 for fluorene to 3 for phenanthrene and benzo[a]pyrene which showed PAHs concentration in the microlayer with an average of five times more than the total PAH in the subsurface samples.  相似文献   

9.
Luan TG  Yu KS  Zhong Y  Zhou HW  Lan CY  Tam NF 《Chemosphere》2006,65(11):2289-2296
The PAH metabolites produced during degradation of fluorene, phenanthrene and pyrene by a bacterial consortium enriched from mangrove sediments were analyzed using the on-fiber silylation solid-phase microextraction (SPME) combining with gas chromatography–mass spectrometry (GC–MS) method. Seventeen metabolites at trace levels were identified in different PAH degradation cultures based on the full scan mass spectra. In fluorene degradation cultures, 1-, 2-, 3- and 9-hydroxyfluorene, fluorenone, and phthalic acid were detected. In phenanthrene and pyrene degradation cultures, various common metabolites such as phenanthrene and pyrene dihydrodiols, mono-hydroxy phenanthrene, dihydroxy pyrene, lactone and 4-hydroxyphenanthrene, methyl ester, and phthalic acid were found. The detection of various common and novel metabolites demonstrates that SPME combining with GC–MS is a quick and convenient method for identification as well as monitoring the real time changes of metabolite concentrations throughout the degradation processes. The knowledge of PAH metabolic pathways and kinetics within indigenous bacterial consortium enriched from mangrove sediments contributes to enhance the bioremediation efficiency of PAH in real environment.  相似文献   

10.
Laboratory evaluation of the efficacy of soil phase photodegradation of recalcitrant hazardous organic components of wood treating wastes is described. The photodecomposition of anthracene, biphenyl, 9H-carbazole, m-cresol, dibenzofuran, fluorene, pentachlorophenol, phenanthrene, pyrene and quinoline under UV and visible light was monitored over a 50-day reaction period in three test soils. Methylene blue, riboflavin, hydrogen peroxide, peat moss and diethylamine soil amendments were evaluated as to their effect on the enhancement of compound photoreaction rates in the test soil systems. Dark control samples monitored over the entire study period were utilized to quantify non-photo mediated reaction losses. Compounds losses in both the dark control and irradiated samples were found to follow first order kinetics, allowing the calculation of first order photodegradation reaction rate constants for each test soil/compound combination. Degradation due to photochemical activity was observed for all test compounds, with compound photolytic half-lives ranging from 7 to approximately 180 days. None of the soil amendments were found to improve soil phase photodegradation, although photosensitization by anthracene was shown to significantly enhance the rate of photodegradation of the other test compounds. Soil type, and its characteristic of internal reflectance, proved to be the most significant factor affecting compound degradation rates suggesting the necessity for site specific assessments of soil phase photodegradation potential.  相似文献   

11.
Biodegradation of phenanthrene in river sediment   总被引:5,自引:0,他引:5  
Yuan SY  Chang JS  Yen JH  Chang BV 《Chemosphere》2001,43(3):273-278
The aerobic biodegradation potential of phenanthrene (a polycyclic aromatic hydrocarbon [PAH]) in river sediment was investigated in the laboratory. Biodegradation rate constants (k1) and half-lives (t1/2) for phenanthrene (5 microg/g) in sediment samples collected at five sites along the Keelung River in densely populated northern Taiwan ranged from 0.12 to 1.13 l/day and 0.61 to 5.78 day, respectively. Higher biodegradation rate constants were noted in the absence of sediment. Two of the sediment samples were capable of biodegrading phenanthrene at initial concentrations 5-100 microg/g; lower biodegradation rates occurred at higher concentrations. Optimal biodegradation conditions were determined as 30 degreesC and pH 7.0. Biodegradation was not significantly influenced by the addition of such carbon sources as acetate, pyruvate, and yeast extract, but was significantly influenced by the addition of ammonium, sulfate, and phosphate. Results show that anthracene, fluorene, and pyrene biodegradation was enhanced by the presence of phenanthrene, but that phenanthrene treatment did not induce benzo[a]pyrene biodegradation during a 12-day incubation period.  相似文献   

12.
This study investigated the effects of various factors on the anaerobic degradation of nonylphenol (NP) in soil. The results show that the optimal pH for NP degradation was 7.0 and that the degradation rate was enhanced when the temperature was increased. The addition of compost enhanced NP degradation. The individual addition of the electron donors lactate, acetate, and pyruvate inhibited NP degradation. The high-to-low order of NP degradation rates under three anaerobic conditions was sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the anaerobic degradation of NP, with sulfate-reducing bacteria being a major component of the soil. Of the anaerobic strains isolated from the soil samples, strain AT3 expressed the best ability to biodegrade NP.  相似文献   

13.
BACKGROUND AND OBJECTIVE: Indigenous soil microorganisms are used for the biodegradation of petroleum hydrocarbons in oily waste residues from the petroleum refining industry. The objective of this investigation was to determine the potential of indigenous strains of fungi in soil contaminated with petroleum hydrocarbons to biodegrade polycyclic aromatic hydrocarbons (PAH). MATERIALS AND METHODS: Twenty one fungal strains were isolated from a soil used for land-farming of oily waste residues from the petrochemical refining industry in Singapore and identified to genus level using laboratory culture and morphological techniques. Isolates were incubated in the presence of 30 mg/L of phenanthrene over a period of 28 days at 30 degrees C. The most effective strain was further evaluated to determine its ability to oxidise a wider range of PAH compounds of various molecular weight i.e acenaphthene, fluorene, fluoranthene, chrysene, benzo(a)pyrene and dibenz(ah)anthracene RESULTS AND DISCUSSION: After 28 days of incubation, 18 of the 21 fungal cultures were capable of oxidising over 50% of the phenanthrene present in culture medium, relative to abiotic controls. Fungal isolate, Penicillium sp. 06, was able to oxidise 89% of the phenanthrene present. This isolate could also oxidise more than 75% of the acenaphthene, fluorene and fluoranthene after 30 days of incubation. However, the oxidation of high molecular weight PAH i.e. chrysene, benzo(a)pyrene and dibenz(ah)anthracene by the Penicillium sp. 06 isolate was limited, where the extent of oxidation was inversely proportional to PAH molecular weight. CONCLUSIONS: Fungal isolate, Penicillium sp. 06, was effective at oxidising a range of PAH in petroleum contaminated soils, but higher molecular weight PAH were more recalcitrant. RECOMMENDATIONS AND OUTLOOK: There is potential for the re-application of this fungal strain to soil for bioremediation purposes.  相似文献   

14.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aqueous deoxyribonucleic acid (DNA) solution from contaminated soil washing was investigated. Initial data with a model effluent consisting of anthracene, phenanthrene, pyrene and benzo[a]pyrene that were individually dissolved in 1% aqueous DNA solution confirmed their positive degradation by Sphingomonas sp. at around 10(8)CFU mL(-1) initial cell loading. For anthracene and phenanthrene, complete removal was achieved within 1h treatment. Degradation of pyrene and benzo[a]pyrene took a relatively longer time of a few days and weeks, respectively. DNA-dissolved PAHs were also degraded relatively faster than PAH crystals in aqueous medium to suggest that the binding of the PAHs in the polymer does not pose serious constraint to bacterial uptake. The DNA was stable against the PAH-degrading bacteria. Parallel experiments with actual DNA solutions obtained during pyrene extraction from an artificially spiked soil also showed similar results. Close to 100% pyrene degradation was achieved after 1d treatment. With its chemical stability, the cell-treated DNA was re-used up to four cycles without a considerable decline in extraction performance.  相似文献   

15.
通过在堆肥中加入经过驯化的降解菌这种土壤有机污染生物修复技术 ,对堆肥中多环芳烃的浓度变化进行监测 ,从而了解降解菌对堆肥中多环芳烃的降解作用。实验结果表明 ,降解菌的加入能明显地提高多环芳烃的降解率 ,本次实验中 ,菲、芴的去除率提高了 2 5 %左右 ,芘的去除率提高了约 4 5 %。  相似文献   

16.
The dissipation of three PAHs, i.e., 500 mg phenanthrene kg(-1) soil, 350 mg anthracene kg(-1) soil and 150 mg benzo(a)pyrene kg(-1) soil, was investigated in soil from Acolman (México) added with cow manure or vermicompost while production of CO(2) and inorganic N was monitored. At day 0, recovery of added phenanthrene was 95%, anthracene 96% and benzo(a)pyrene 100% in sterilized soil and concentrations did not change significantly in sterilized soil over time. Application of organic material did not affect the concentration of phenanthrene and anthracene, which decreased sharply in the unsterilized soil in the first weeks of the incubation. Less than 3% of the added phenanthrene was detected after 100 days and less than 8.5% of the added anthracene (mean of the two experiments). The decrease in concentration of benzo(a)pyrene (BaP) was not fast as that of phenathrene and anthracene, and 22% was extractable from soil still after 100days. It was concluded that addition of farm yard manure (FYM) and vermicompost only had an effect on the initial dissipation of phenanthrene, anthracene and benzo(a)pyrene in soil of Acolman.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene, anthracene and Benzo[a]pyrene (BaP) are toxic for the environment. Removing these components from soil is difficult as they are resistant to degradation and more so in soils with high pH and large salt concentrations as in soil of the former lake Texcoco, but stimulating soil micro-organisms growth by adding nutrients might accelerate soil restoration. Soil of Texcoco and an agricultural Acolman soil, which served as a control, were spiked with phenanthrene, anthracene and BaP, added with or without biosolid or inorganic fertilizer (N, P), and dynamics of PAHs, N and P were monitored in a 112-day incubation. Concentrations of phenanthrene did not change significantly in sterilized Acolman soil, but decreased 2-times in unsterilized soil and >25-times in soil amended with biosolid and NP. The concentration of phenanthrene in unsterilized soil of Texcoco was 1.3-times lower compared to the sterilized soil, 1.7-times in soil amended with NP and 2.9-times in soil amended with biosolid. In unsterilized Acolman soil, degradation of BaP was faster in soil amended with biosolid than in unamended soil and soil amended with NP. In unsterilized soil of Texcoco, degradation of BaP was similar in soil amended with biosolid and NP but faster than in the unamended soil. It was found that application of biosolid and NP increased degradation of phenanthrene, anthracene and BaP, but to a different degree in alkaline-saline soil of Texcoco compared to an agricultural Acolman soil.  相似文献   

18.
The removal of phenanthrene, anthracene and benzo(a)pyrene added at three different concentrations was investigated with or without earthworms (Eisenia fetida) within 11 weeks. Average anthracene removal by the autochthonous micro-organisms was 23%, 77% for phenanthrene and 13% for benzo(a)pyrene, while it was 51% for anthracene, 47% for benzo(a)pyrene and 100% for phenanthrene in soil with earthworms. At 50 and 100mg phenanthrene kg(-1)E. fetida survival was 91% and 83%, but at 150 mg kg(-1) all died within 15 days. Survival of E. fetida in soil amended with anthracene < or = 1000 mg kg(-1) and benzo(a)pyrene < or = 150 mg kg(-1) was higher than 80% and without weight loss compared to the untreated soil. Only small amounts of PAHs were detected in the earthworms. It was concluded that E. fetida has the potential to remove large amounts of PAHs from soil, but more work is necessary to elucidate the mechanisms involved.  相似文献   

19.
Combined UV-biological degradation of PAHs   总被引:6,自引:0,他引:6  
The UV-photolysis of PAHs was tested in silicone oil and tetradecane. In most cases, the degradation of a pollutant provided within a mixture was lower than when provided alone due to competitive effects. With the exception of anthracene, the larger pollutants (4- and 5-rings) were always degraded first, proving that UV-treatment preferentially acts on large PAHs and thereby provides a good complement to microbial degradation. UV-photolysis was also found to be suitable for treatment of soil extract from contaminated soils. The feasibility of UV-biological treatment was demonstrated for the removal of a mixture of phenanthrene and pyrene in silicone oil. UV-irradiation of the silicone oil led to 83% pyrene removal but no phenanthrene photodegradation. Subsequent treatment of the oil in a two-phases partitioning bioreactor (TPPB) system inoculated with Pseudomonas sp. was followed by complete phenanthrene biodegradation but no further pyrene removal. Totally, the combined process allowed 92% removal of the PAH mixture. Further work should focus on characterizing the photoproducts formed and studying the influence of the solvent on the photodegradation process.  相似文献   

20.
Diesel exhaust consists of a complex mixture of chemicals which contain known genotoxicants, one of which is polycyclic aromatic hydrocarbons (PAHs) which may be associated with adverse respiratory health outcomes. This study aimed to evaluate the distribution patterns of PAHs (anthracene, naphthalene, fluorene, phenanthrene, cyclopentaphenanthrene, pyrene, fluoranthene, benzanthracene, chrysene, benzo(e)pyrene, benzoacephenanthrylene, and benzo(a)pyrene) in serum collected from asthmatic and healthy control children. PAH serum levels were measured in samples collected from children who lived in 11 different locations in/round Riyadh, Saudi Arabia (Al-yarmouk, Usaibi, Sultana Al-kadema, Omrrojam, Kof, Janoob Dawdmi, Guberah, Arabbuah, Al-mozahemyah, Iskan Al-mazzer, and Al-gharabi) during the period 2010–2011. Our results showed that the highest total mean concentrations of PAH were found in serum samples collected from people who lived in Sultana Aljadhida, Almozahemyah, Guberah, and Omrrojam and were 663.9, 486.17, 412.18, and 258.6 ng ml?1, respectively. The most prevalent PAHs in serum samples were naphthalene, bezanthracene, benzoacephenanthrylene, phenanthrene, chrysene, and benzo(a)pyrene with a frequency that ranged from 54.5 to 90.9 % positive samples. A close monitoring of PAH pollution is strongly recommended, especially in food and plant samples, because of their high bioaccumulation capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号