首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
滇池大气沉降氮磷形态特征及其入湖负荷贡献   总被引:2,自引:2,他引:2  
为研究季节变化和降雨量对滇池各种氮磷形态浓度的影响,采用紫外分光光度法测定大气沉降的各种氮磷形态浓度,探讨滇池湖面氮磷对水污染的贡献.结果表明,滇池大气沉降氮浓度普遍符合雨季低,旱季高的特点;大气沉降氮磷负荷与降雨量正相关,季节性变化主要呈雨季高,旱季低.大气沉降氮负荷以DIN为主,占总氮沉降负荷的63. 70%;磷负荷以PP为主,占总磷沉降负荷的45. 54%,过度施肥和肥料中氮磷的流失是大气湿沉降中主要的氮磷来源.结合入湖河流数据,滇池大气沉降中TN和TP的沉降量分别为河流入湖负荷的6. 14%和12. 76%,因而滇池主要污染来源仍然是入湖河流带来的负荷.但滇池大气沉降氮磷通量与其他地区相比处于中等偏上地位,所以该贡献仍需重视.  相似文献   

2.
密云水库周边小流域大气氮磷沉降特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
大气沉降是氮磷元素进入水体的重要途径之一,为了解密云水库水源地周边大气氮磷沉降特征,选取土门西沟小流域为研究区域,设置降水、降尘自动采样器进行为期一年(2019年9月—2020年8月)的大气沉降收集,分析大气干、湿沉降中不同形态氮磷通量逐月和季节变化及其影响因素,估算大气氮磷沉降对小流域及密云库区氮磷输入的贡献. 结果表明:①土门西沟小流域大气氮、磷年沉降通量分别为38.393和1.952 kg/(hm2·a),氮磷干湿沉降通量季节性变化显著. ②湿沉降受气象(降雨量、温度、降雨时间间隔)等因素影响,氮磷沉降通量表现为夏季>春季>秋季>冬季,温度升高、降雨时间间隔变长均会使氮磷湿沉降浓度增大,而降雨量大小与大气湿沉降通量直接相关. ③干沉降受物质来源及气象等因素影响,氮磷沉降通量呈夏冬季高、春秋季低的特点,其中风向、风速是影响大气氮磷干沉降的重要因子. ④经计算,土门西沟小流域大气氮、磷沉降贡献分别为1 339.90和1.50 kg/a,分别占其氮、磷输出贡献的28.57%和0.39%,若不考虑空间差异性,预计大气沉降直接落入密云水库总氮(TN)和总磷(TP)的沉降量分别为551.18和28.02 t. 研究显示,大气沉降是密云库区周边面源污染综合管理的重要一环,未来应引起足够关注.   相似文献   

3.
大气氮磷干沉降是湖泊外源营养盐输入的重要途径之一,对湖泊水体富营养化及生态系统演化具有重大影响。文章为了深入揭示洱海湖区大气氮磷干沉降(颗粒物)对水体的贡献,于2021年全年对洱海周边布设的6个站点进行了为期1 a的大气干沉降连续监测,使用自动降尘采样器湿法收集大气干沉降。分析了洱海湖区氮磷干沉降通量的时空分布特征,估算了氮磷干沉降直接入湖负荷量。结果表明:洱海湖区干沉降(颗粒物)TN、TP沉降通量年内总体呈先降后升再降的趋势。TN沉降通量范围为8.78~84.93 kg/km2,均值为(33.44±15.94) kg/km2;TP沉降通量范围为0.38~11.91 kg/km2,均值为(4.04±2.69) kg/km2;2021年洱海湖区干沉降TN、TP直接入湖负荷量分别为107.69 t和13.28 t,TN、TP干沉降直接入湖负荷量约占流域农业面源排放量的3.91%和5.12%;影响洱海湖区TN、TP干沉降的主要因素包括湖区上空低层风场环流、湖区降雨分布、气溶胶粒径以及小流域下垫面土地利用现状。  相似文献   

4.
为了研究邯郸市大气氮干湿沉降特征,文章利用自动分离干湿沉降采样器对邯郸市的干湿沉降进行逐月采集,测定了干湿沉降量和干湿沉降中氮的浓度,并计算了氮沉降通量。结果显示,监测期内氮干沉降通量和湿沉降通量分别为14.60 kg/(hm2·a)和33.44 kg/(hm2·a),氮沉降通量以湿沉降为主。邯郸市春季、夏季和秋季的氮湿沉降通量分别为7.37、12.34和13.15 kg/hm2,邯郸市春季、夏季、秋季、冬季的氮干沉降通量分别为5.36、4.64、2.78和3.28 kg/hm2。TN、NH4+、NO3-和DON的湿沉降通量与降雨量密切相关,其沉降浓度与降雨量呈显著的负指数幂相关。氮干沉降通量不仅与降尘量有关,还受温度、湿度、风速等条件影响。化肥的使用、汽车排放、化石燃料的燃烧以及污水处理厂排放的NH3是邯郸市氮素沉降的重要来源。邯郸市氮素沉降总量已可满足无肥区小麦的需求,建议适当减少氮肥的...  相似文献   

5.
青岛地区大气沉降物中化学成分研究   总被引:2,自引:0,他引:2  
用原子吸收和分光光度法测定了青岛大气干、湿沉降物中K、Na、Ca、Mg的含量及雨水中的阴离子SO4^2-、Cl^-、NO3^-、NO2^-、PO4^3-、SiO3^2-等含量和PH。分析表明,雨水中溶解态的金属元素和阴离子的浓度与降雨量反相关,其中金属元素浓度高于偏远沿海地区雨水中金属元素的浓度,而低于内陆雨水。近岸地区雨水中K/Cl、Na/Cl、Ca/Cl、Mg/Cl比相近,均高于大洋水的相应比  相似文献   

6.
杭州北里湖大气沉降研究   总被引:2,自引:0,他引:2  
本文主要研究了2011年2月至2012年2月杭州北里湖大气中的干、湿沉降,并通过计算大气中TN、TP、DTN和DTP的沉降通量来研究其对北里湖的影响程度。结果表明:杭州北里湖氮沉降主要以湿沉降为主,且大气氮沉降物中主要是以DTN的形式存在,最高可达99.5%;而磷沉降则以干沉降为主,DTP的月干沉降通量在TP月总沉降通量中所占的比例相对较低;TN、TP的月湿沉降通量与降水量有着密切的相关关系,都会随着降水量的增大而增大;同时DTN的月湿沉降通量在TN月湿沉降通量中所占的比例非常高,而DTP的月湿沉降通量在TP月湿沉降通量中所占的比例较少,这间接说明了氮对北里湖的影响要高于磷。  相似文献   

7.
北京市区大气氮沉降研究   总被引:9,自引:3,他引:6  
2009年3~9月,使用离子交换树脂柱法对北京市区大气氮沉降进行了观测.2009年3~6月,北京市区大气硝态氮沉降平均值为40.59 mg.m-2,大气亚硝态氮沉降平均值为14.66 mg.m-2.2009年6~9月,北京市区大气硝态氮沉降平均值为75.13 mg.m-2,大气亚硝态氮沉降平均值为20.67 mg.m-2.观测表明,大气硝态氮和亚硝态氮沉降有明显的局部分异特点,沉降量大的地点主要是交通干线和热电厂周边地区,显示了大气硝态氮和亚硝态氮的线源和点源特征.2009年3~6月,北京市区大气氨态氮沉降平均值为12.19 mg.m-2.2009年6~9月,北京市区大气氨态氮沉降平均值为8.46 mg.m-2.结果表明,各观测点之间大气氨态氮沉降变化明显小于硝态氮和亚硝态氮,显示了大气氨态氮的非点源特征.  相似文献   

8.
对渤海湾大气微生物粒子沉降量子测定,结果表明:测定大气中海洋性细菌真菌,,总菌粒子沉降量及真菌/总菌百分比分别为1774.5、389.1、2163.6CFU/m^3和18.0。陆源性细菌,真菌,总菌粒子沉降量及真菌/总菌百分比为1377.94、440.6、1818.5CFU/m^3和24.2。海上大气中所含的海洋性微生物总量较大,仍有不少陆源性微生物。这意味着陆源污染和人群活动对近岸海区大气的影响  相似文献   

9.
畜禽养殖废弃物及农业氮磷流失造成的环境面源污染已经成为太湖流域湖泊和水体污染的主要来源之一.通过现场勘查、文献查阅、实地调研等方法,对以太仓为代表的江苏太湖流域畜禽养殖及农业氮磷流失造成的农村生态环境污染问题进行了分析,研究提出了污染防治示范区构建的指导思想、基本原则、技术路径、技术及模式创新点,用五大发展新理念指导污染防治示范区构建,创新畜禽养殖废弃物及农业氮磷污染防治的产业化模式、区域分散畜禽粪便收集服务的社会化体系、覆盖农业氮磷污染防治全程的可控化技术体系.  相似文献   

10.
戴云山国家级自然保护区大气氮沉降特点   总被引:5,自引:2,他引:5  
袁磊  李文周  陈文伟  张金波  蔡祖聪 《环境科学》2016,37(11):4142-4146
利用干湿沉降采集器,持续观测戴云山国家级自然保护区内大气氮素干、湿沉降,调查当地大气氮沉降的种类和沉降通量.结果表明,2015-03-27~2015-10-09观测期间,戴云山自然保护区大气氮干、湿沉降量分别为2.30 kg·hm~(-2)和14.79kg·hm~(-2),以湿沉降形式为主(87%).干沉降中可溶性有机氮的沉降量为1.21 kg·hm~(-2),占干沉降通量的53%;无机氮以硝态氮为主(0.71 kg·hm~(-2)),铵态氮相对较低(0.37 kg·hm~(-2)).湿沉降中无机氮和可溶性有机氮沉降量分别为9.41 kg·hm~(-2)和5.38 kg·hm~(-2),其中无机氮以铵态氮为主(6.07 kg·hm~(-2)).大气氮湿沉降量和当地降雨量显著正相关,降雨量越大,对应的湿沉降氮量也越大.戴云山国家级自然保护区大气氮素沉降量较高,可能会对当地生态环境产生较大的影响.  相似文献   

11.
2009-2018年太湖大气湿沉降氮磷特征对比研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为了研究太湖2009-2018年大气湿沉降的时空变化特征,于2009年8月-2010年7月及2017年8月-2018年7月进行了两次环太湖大气湿沉降逐月调查,并从降水中ρ(TN)和ρ(TP)、湿沉降率及沉降通量三方面,对比分析了太湖大气湿沉降的时空变化特征.结果表明:①2009年8月-2010年7月降水中ρ(TN)、ρ(TP)平均值分别为3.170、0.077 mg/L;2017年8月-2018年7月降水中ρ(TN)、ρ(TP)平均值分别为3.160、0.056 mg/L;T检验结果表明,两次调查ρ(TN)、ρ(TP)污染水平差异显著,主要是由于2017年8月-2018年7月较高污染浓度降水事件的减少,全年降水中ρ(TN)、ρ(TP)变异较小.②与2017年8月-2018年7月相比,2009年8月-2010年7月太湖TN、TP湿沉降率平均值分别下降33%和53%,且TN、TP湿沉降空间分布更均匀.③与2009年8月-2010年7月相比,2017年8月-2018年7月太湖流域大气TN、TP沉降通量分别为7 641和131 t,分别下降30%、47%.研究显示,两次调查降水中ρ(TN)平均值均远高于水体富营养化阈值(0.2 mg/L),因此大气湿沉降中的营养盐对太湖富营养化的贡献不可忽视.   相似文献   

12.
太湖氮磷营养盐大气湿沉降特征及入湖贡献率   总被引:11,自引:2,他引:11  
2009年8月—2010年7月在太湖流域不同区域10个采样点收集降水样品230多个,测定其中不同形态N,P营养盐的质量浓度,分析太湖大气湿沉降中N,P营养盐沉降特征,计算N,P营养盐湿沉降率及其占太湖河流入湖负荷的贡献率. 结果表明:湿沉降中ρ(TN)年均值为3.16 mg/L,DTN(溶解性总氮)占TN的70%以上,其中以NH4+-N为主;湿沉降中ρ(TN)年均值最高值出现在南部湖区,最低值出现在北部湖区. 湿沉降中ρ(TP)年均值为0.08 mg/L,相对较低. 5个区域湿沉降中不同形态N的质量浓度均表现为冬季高、夏季低,而不同形态N,P的湿沉降量均为夏季最大. 南部、东部湖区TN的湿沉降率相对较大. 各采样点湿沉降中NH4+-N沉降率约占DTN沉降率的30.4%~52.0%,NO3--N沉降率约占DTN的31.6%;各区域间湿沉降中DTP(溶解性总磷)占TP的比例差异较大. 大气湿沉降中TN和TP的年沉降总量分别为10 868 和247 t,为同期河流入湖负荷的18.6%和11.9%,湿沉降对太湖富营养化的贡献及可能带来的水生态系统的影响不容忽视.   相似文献   

13.
通过对2020年位于洱海湖区周边4个站点大气降水的实地监测,定量揭示了大气湿沉降不同形态氮素(TN、DTN、AN、NN、NIT、PN)的浓度和时空分布规律,探讨了氮素沉降通量的变化特征及其主要影响因子,进而明确了大气氮湿沉降对湖区外源性氮素输入的贡献程度,评估了氮素湿沉降入湖负荷对湖区水环境的影响。结果表明:各监测点降水中氮素浓度年内总体呈先升后降再升的趋势,总氮浓度为0.18~8.73 mg/L,平均浓度为1.34±0.686 mg/L,氮素浓度呈现干季高湿季低的变化规律;氮素湿沉降通量月际变化大致呈M双峰型,沉降通量峰值出现在浓度最低但降雨量最大的8月,最小值出现在12月,沉降通量与降雨量呈极显著正相关,沉降通量AN/NN为1.97,农业生产活动的氮素排放是湿沉降的主要来源;2020年洱海湖面湿沉降总氮直接输入负荷量约为170.11 t,其中铵态氮86.86 t,硝态氮51.58 t,总氮直接入湖负荷约占流域农业面源排放量的6.18%。  相似文献   

14.
太湖入湖河流总氮与氨氮相关性特征分析研究   总被引:1,自引:0,他引:1  
针对河流缺少总氮环境质量标准的问题,以太湖流域入湖河流历年多组实测监测数据为基础,选择总氮与氨氮两项指标,开展太湖入湖河流总氮与氨氮相关性研究,总结数据的潜在规律,为有效控制氮排放提供技术支撑.结果表明:氨氮和总氮浓度呈现明显的正相关性.不同水质类别河流中氨氮和总氮关系呈现不同特征,对于Ⅴ类和劣于Ⅴ类等污染较重水体,水体中氨氮形态存在的氮化合物占比较高;对于水质类别较好的水体,氮化合物以其它形态为主.太湖入湖河流以氨氮形态存在的氮化合物总体较高,太湖入湖河流新旧污染同时存在现象较明显.  相似文献   

15.
研究水体氮、磷营养盐的空间变异性及时空动态变化,有助于人们深入认识和了解氮、磷营养盐的变化对藻类生长繁殖的影响,对于治理富营养化水体中藻类的暴发性增长具有重要意义.基于地统计学分析方法,以太湖2014年8月~2015年5月夏、秋、冬、春四季为研究时段,分析了草、藻型等不同生态类型湖区颗粒态和溶解态氮、磷营养盐的来源以及赋存形态,营养盐限制类型的时空分布特征,并探寻其时空变化原因.结果表明:(1)时空分布上,水体中氮、磷含量整体表现为冬季高于其他季节,呈现由西北湖区向东南湖区递减的特征;颗粒态氮、磷与叶绿素a含量则表现为夏季高于其他季节,冬季高值区均位于南部湖区,其余季节高值区集中在西北湖区.(2)随季节变化,太湖草、藻型湖区氮磷营养盐形态组成发生了大的变化;藻型湖区由冬季以硝酸盐氮和有机磷为主,转变为其余季节以颗粒态氮磷为主,而草型湖区由冬季以颗粒态氮磷为主,转变为其余季节以氨氮和有机氮磷为主.(3)营养结构上,藻型湖区总氮/总磷比值由秋冬季节大于16,降低为夏春季节的小于16;而草型湖区却由秋冬季节小于16,升高为夏春季节大于16.溶解态氮磷比在藻型湖区的空间变化规律与总氮/总磷比值一致,而在草型湖区溶解态氮磷比由秋季小于16,升高为夏、冬、春季节大于16.颗粒态氮磷比时空变化均不显著(P 0. 05),各季节藻型湖区颗粒态氮磷比值均小于16,草型湖区均大于16.  相似文献   

16.
太湖竺山湾沉积物碳氮磷分布特征与污染评价   总被引:3,自引:5,他引:3  
为了揭示太湖竺山湾沉积物中碳、氮和磷的分布特征,本研究在太湖竺山湾设置3个断面(湖湾内,A断面;湖湾中部,B断面;开敞湖区,C断面) 10个采样点,采集沉积物柱状样,每2 cm间隔分层测定沉积物中总氮(TN)、总磷(TP)和总有机碳(TOC)含量,以揭示其水平分布和垂向分布特征.结果表明,在空间上竺山湾表层沉积物呈现开敞湖区向湖湾富集的特征,湖湾内部碳、氮和磷含量显著高于开敞湖区(P 0. 01),其中湖湾内(A断面)表层沉积物TN、TP和TOC含量分别为1. 53、1. 55和11. 31 mg·g~(-1),而靠近开敞湖区(C断面)表层沉积物TN、TP和TOC含量仅为0. 75、0. 57和6. 70 mg·g~(-1).垂向分布特征表现为表层富集,3个断面TN、TP和TOC含量随着底泥深度的增加均呈现出下降趋势,表层沉积物TN、TP和TOC含量分别是底层的2~3、2~5和2~3倍.整体而言,竺山湾沉积物TP含量均值为0. 93 mg·g~(-1),属于重度污染,而TN平均含量为1. 11 mg·g~(-1),属于轻度污染;有机氮指数和综合污染指数显示,竺山湾北部地区污染水平为重度污染区,有机污染相对较强,TP的污染指数(STP)处于1. 03~3. 87之间,属于重度污染.  相似文献   

17.
小流域大气氮干湿沉降特征   总被引:7,自引:1,他引:7  
王焕晓  庞树江  王晓燕  樊彦波 《环境科学》2018,39(12):5365-5374
大气氮沉降是陆源污染物和营养物质向水生生态系统传输的重要途径之一.在人类活动影响较大的流域,大量氮素通过大气沉降的形式输入到水体中,能够对地表水体的营养结构、水生生物的生存环境等造成严重的负面生态效应.本文以密云水库石匣小流域为例,采集并分析了研究区大气氮沉降(颗粒态干沉降与湿沉降)样品,探讨了该流域大气氮沉降通量的变化特征及其主要影响因子,进而明确了大气氮沉降对流域氮输入的贡献程度.结果表明:(1)石匣流域大气氮总沉降(颗粒态干沉降与湿沉降之和)呈现出明显的季节变化特征;对湿沉降而言,总氮、氨氮在夏季沉降通量最大,溶解性有机氮沉降通量在春季最大,而硝态氮季节变化并不明显;对颗粒态干沉降而言,总氮和氨氮的沉降通量在冬季最高;硝态氮在不同季节变化不明显,但其沉降趋势与总氮基本一致;溶解性有机氮在秋季出现最高值.(2)该流域氮沉降通量为43. 14 kg·hm-2,其中湿沉降通量占39. 85%,颗粒态干沉降通量占60. 15%.(3)降雨和风速条件是影响大气氮沉降的重要影响因子,其中雨量和雨强与氮湿沉降浓度均呈明显的负相关关系;对颗粒态干沉降而言,监测期内平均风速是影响颗粒态氨氮干沉降通量的重要因子.(4)大气氮沉降占该流域总的氮素输入量的15. 09%,是仅次于畜禽养殖和农村生活的重要污染源.本研究结果可为密云水库上游流域氮素综合管理提供科学参考.  相似文献   

18.
太湖沉积物氮磷吸附/解吸特征分析   总被引:13,自引:8,他引:13  
通过90组吸附/解吸实验研究了太湖沉积物氮、磷的吸附/解吸等温线特征,同时将平衡点浓度、本底吸附量、吸附效率与间隙水、沉积物中各形态氮、磷进行相关性分析,以期对太湖沉积物的"源"、"汇"情况进行分析.结果表明,在供试的浓度范围内,沉积物氮磷的吸附/解吸等温线呈显著线性关系,全湖氮的平均吸附/解吸平衡点浓度为1.10 m...  相似文献   

19.
湖泊沉积物既是氮磷等营养物质的储存库,也是水体营养盐的二次污染源,可以缓冲水体氮磷浓度变化,进而影响水体营养盐的生物可利用性和藻类生长.本文以太湖梅梁湾为研究对象,通过模拟实验研究沉积物参与下外源氮磷脉冲式输入对水体营养盐浓度和藻类生长的影响,并阐明氮磷在沉积物、水和藻类间的迁移转化及再分配过程.结果表明,当以0.30 mg·(L·d)-1的速率脉冲式输入氮时,实验组(有沉积物)水体氮浓度远低于相应的对照组(无沉积物),沉积物参与下水体氮约以0.144~0.156 mg·(L·d)-1的速率脱除,根据单位面积估算水体脱氮速率约为40.793~44.193 mg·(m2·d)-1,脱氮量约占外源氮的48%~52%;而相应对照组水体约以0.021~0.039 mg·(L·d)-1的速率脱氮,脱氮量仅占外源氮的7%~13%,可见沉积物-水界面作为浅水湖泊反硝化等脱氮过程的主要场所,对减轻湖泊氮负荷具有重要贡献.当以0.015 mg·(L·d)-1的速率脉冲式输入...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号