共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(lactic acid) is the subject of considerable commercial development by a variety of organizations around the world. In this work, the thermal and rheological properties of two commercial-grade poly(lactic acid)s (PLAs) are investigated. A comparison of the commercial samples to a series of well-defined linear and star architecture PLAs provides considerable insight into their flow properties. Such insights are valuable in deciding processing strategies for these newly emerging, commercially significant, biodegradable plastics. Both a branched and linear grade of PLA are investigated. The crystallization kinetics of the branched polymer are inferred to be faster than the linear analog. Longer relaxation times in the terminal region for the branched material compared to the linear material manifests itself as a higher zero shear rate viscosity. However, the branched material shear thins more strongly, resulting in a lower value of viscosity at high shear rates. Comparison of the linear viscoelastic spectra of the branched material with the spectra for star PLAs suggests that the branched architecture is characterized by a span molecular weight of approximately 63,000 g/mol. The present study conclusively demonstrates that a wide spectrum of flow properties are available through simple architectural modification of PLA, thus allowing the utilization of this important degradable thermoplastic in a variety of processing operations. 相似文献
2.
Jyh-Horng Wu Ming-Shien Yen Chien-Pang Wu Chia-Hao Li M. C. Kuo 《Journal of Polymers and the Environment》2013,21(1):303-311
This study produced poly (lactic acid) sheets using a biaxial stretching process, to investigate the effects of biaxial stretching on thermal properties, crystallinity, shrinkage and mechanical properties of PLA films. The results of differential scanning calorimetry show that the glass temperature peak of PLA films, which weakened after stretching. The cold crystallization peak of PLA films nearly disappeared at stretch ratios of 4 × 4 with a stretching rate above 50 %/s. The orientation and strain crystallization of PLA films were suppressed at stretching temperatures of approximately 100–110 °C. The shrinkage of PLA decreased proportionally to the stretch rate and inversely proportional to the stretching temperature, suggesting that the internal stresses frozen in the amorphous phase were an indication of a decrease in the crystallinity of the films, implying that PLA films would be best suited to low-shrinkage applications. The stress–strain of the PLA films increased considerably following the biaxial stretching process. In addition, PLA films exposed to hot water treatment show a slight decrease in stress values, probably attributable to a relaxation of the molecules, which have undergone orientation but failed to crystallize. 相似文献
3.
Nuria Burgos Daniel Tolaguera Stefano Fiori Alfonso Jiménez 《Journal of Polymers and the Environment》2014,22(2):227-235
The use of fully bio-based and biodegradable materials for massive applications, such as food packaging, is an emerging tendency in polymer research. But the formulations proposed in this way should preserve or even increase the functional properties of conventional polymers, such as transparency, homogeneity, mechanical properties and low migration of their components to foodstuff. This is not always trivial, in particular when brittle biopolymers, such as poly(lactic acid) (PLA), are considered. In this work the formulation of innovative materials based on PLA modified with highly compatible plasticizers, i.e. oligomers of lactic acid (OLAs) is proposed. Three different synthesis conditions for OLAs were tested and the resulting additives were further blended with commercial PLA obtaining transparent and ductile materials, able for films manufacturing. These materials were tested in their structural, thermal and tensile properties and the best formulation among the three materials was selected. OLA with molar mass (Mn) around 1,000 Da is proposed as an innovative and fully compatible and biodegradable plasticizer for PLA, able to replace conventional plasticizers (phthalates, adipates or citrates) currently used for films manufacturing in food packaging applications. 相似文献
4.
Nugraha E. Suyatma Alain Copinet Lan Tighzert Veronique Coma 《Journal of Polymers and the Environment》2004,12(1):1-6
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA. 相似文献
5.
Wannapa Chumeka Varaporn Tanrattanakul Jean-François Pilard Pamela Pasetto 《Journal of Polymers and the Environment》2013,21(2):450-460
Natural rubber grafted with poly(vinyl acetate) copolymer (NR-g-PVAc) was synthesized by emulsion polymerization. Three graft copolymers were prepared with different PVAc contents: 1 % (G1), 5 % (G5) and 12 % (G12). Poly(lactic acid) (PLA) was melt blended with natural rubber (NR) and/or NR-g-PVAc in a twin screw extruder. The blends contained 10–20 wt% rubber. The notched Izod impact strength and tensile properties were determined from the compression molded specimens. The effect of NR mastication on the mechanical properties of the PLA/NR/NR-g-PVAc blend was evaluated. Characterization by DMTA and DSC showed an enhancement in miscibility of the PLA/NR-g-PVAc blend. The temperature of the maximum tan δ of the PLA decreased with increasing PVAc content in the graft copolymer, i.e., from 71 °C (pure PLA) to 63 °C (the blend containing 10 % G12). The increase in miscibility brought about a reduction in the rubber particle diameter. These changes were attributed to the enhancement of toughness and ductility of PLA after blending with NR-g-PVAc. Therefore, NR-g-PVAc could be used as a toughening agent of PLA and as a compatibilizer of the PLA/NR blend. NR mastication was an efficient method for increasing the toughness and ductility of the blends which depended on the blend composition and the number of mastications. 相似文献
6.
Yanan Song Jun Liu Shaozhuang Chen Yubin Zheng Shilun Ruan Yuezhen Bin 《Journal of Polymers and the Environment》2013,21(4):1117-1127
This research dealt with a novel method of fabricating green composites with biodegradable poly (lactic acid) (PLA) and natural hemp fiber. The new preparation method was that hemp fibers were firstly blending-spun with a small amount of PLA fibers to form compound fiber pellets, and then the traditional twin-screw extruding and injection-molding method were applied for preparing the composites containing 10–40 wt% hemp fibers with PLA pellets and compound fiber pellets. This method was very effective to control the feeding and dispersing of fibers uniformly in the matrix thus much powerful for improving the mechanical properties. The tensile strength and modulus were improved by 39 and 92 %, respectively without a significant decrease in elongation at break, and the corresponding flexural strength and modulus of composites were also improved by 62 and 90 %, respectively, when the hemp fiber content was 40 wt%. The impact strength of composite with 20 wt% hemp fiber was improved nearly 68 % compared with the neat PLA. The application of the silane coupling agent promoted further the mechanical properties of composites attributed to the improvement of interaction between fiber and resin matrix. 相似文献
7.
Effect of the Recycling and Annealing on the Mechanical and Fracture Properties of Poly(Lactic Acid)
L. Nascimento J. Gamez-Perez O. O. Santana J. I. Velasco M. Ll. Maspoch E. Franco-Urquiza 《Journal of Polymers and the Environment》2010,18(4):654-660
The aim of this work is to evaluate the use of Poly(lactic acid) (PLA) industrial waste as a source of raw material for certain
applications, as well as to understand the effects of the annealing on the fracture behavior of PLA. PLA waste has been simulated
by an initial step of extrusion in a single screw extruder and pelletizing. Specimens of virgin and reprocessed PLA were obtained
by injection molding. An annealing treatment capable of increasing the percentage of crystallinity (determined by differential
scanning calorimetry) was also analyzed in reprocessed and non reprocessed specimens. The fracture behavior was studied at
slow and high testing speed, applying the linear elastic fracture mechanics (LEFM) on single edge notched bend (SENB) specimens.
This study revealed that the fracture toughness of the reprocessed PLA was basically the same that the virgin PLA and also
that the increase in the crystalline fraction produced an improvement on the fracture toughness, at slow loading rate. 相似文献
8.
Ji-Zhao Liang 《Journal of Polymers and the Environment》2012,20(3):872-878
The polypropylene (PP)/poly(ethylene-co-octene) (POE) blends was prepared by means of a twin screw extruder in a range of temperature from 185 to 195 °C. The mechanical properties including tensile, flexural and impact of the PP/POE blends were measured at room temperature to identify the effect of the POE content on the mechanical properties. It was found that the Young’s modulus, tensile strength and tensile elongation at break decreased nonlinearly with increasing the POE weight fraction. While the V-notched and unnotched impact fracture strength increased nonlinearly with an increase of the POE weight fraction. The flexural modulus and strength decreased roughly linearly with increasing the POE weight fraction. Furthermore, the impact fracture surface of the blends was observed by using a scanning electronic microscope and the toughening mechanisms were discussed. 相似文献
9.
Wei-Ming Chiu Hsuan-Yuan Kuo Peir-An Tsai Jyh-Horng Wu 《Journal of Polymers and the Environment》2013,21(2):350-358
This work prepared poly (lactic acid) (PLA)/single-walled carbon nanotubes (SWCNTs) composites using a solution blend method, and investigated the influence of the physical properties of PLA/SWCNTs composites. In order to enhanced interfacial interactions between PLA and SWCNTs, the purified SWCNTs were given functionalisation treatments with a nitric acid/sulfuric acid mixture. These acid-treated SWCNTs (A-SWCNTs) were then grafted with 3-isocyanatopropyl triethoxysilane (A-SWCNTs-Si). When these functionalized SWCNTs were used to fill the PLA matrix, the fractured surface of composite does not present the pullout phenomenon. The dimensional stability obviously increased by a factor of approximately 72. The storage modulus was also significantly improved. The surface resistivity of the PLA/SWCNTs composites decreased from 1 × 1016 to 2.22 × 104 Ω/cm2. 相似文献
10.
A. Dorigato M. Sebastiani A. Pegoretti L. Fambri 《Journal of Polymers and the Environment》2012,20(3):713-725
Various kinds of fumed silica nanoparticles, different in terms of specific surface area and surface functionalization, were melt compounded with a poly(lactic acid) biodegradable matrix, with the aim to investigate the thermo-mechanical and optical properties of the resulting materials. Untreated nanoparticles at elevated surface area resulted to be effective in increasing elastic modulus, because of the extended filler?Cmatrix interaction, while the finer dispersion of silica aggregates at the nanoscale obtained with surface treated nanoparticles led to noticeable improvements of the tensile properties at yield and at break, both under quasi-static and impact conditions. Also the fracture toughness and the creep stability were substantially enhanced by nanosilica addition, without impairing the original optical transparency of the matrix. 相似文献
11.
12.
Bouti Mohamed Irinislimane Ratiba Belhaneche-Bensemra Naima 《Journal of Polymers and the Environment》2022,30(1):232-245
Journal of Polymers and the Environment - This study aims to improve low intrinsic ductility of poly (lactic acid) (PLA) by using a novel bio-sourced plasticizer environmentally friendly and... 相似文献
13.
A Literature Review of Poly(Lactic Acid) 总被引:32,自引:0,他引:32
Donald Garlotta 《Journal of Polymers and the Environment》2001,9(2):63-84
A literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA). Poly(lactic acid) exists as a polymeric helix, with an orthorhombic unit cell. The tensile properties of PLA can vary widely, depending on whether or not it is annealed or oriented or what its degree of crystallinity is. Also discussed are the effects of processing on PLA. Crystallization and crystallization kinetics of PLA are also investigated. Solution and melt rheology of PLA is also discussed. Four different power-law equations and 14 different Mark–Houwink equations are presented for PLA. Nuclear magnetic resonance, UV–VIS, and FTIR spectroscopy of PLA are briefly discussed. Finally, research conducted on starch–PLA composites is introduced. 相似文献
14.
Tong Huang Motohiro Miura Shogo Nobukawa Masayuki Yamaguchi 《Journal of Polymers and the Environment》2014,22(2):183-189
Effect of the addition of poly(ethylene glycol) terminated by benzoate (PEG-BA) on the crystallization behavior and dynamic mechanical properties of poly(l-lactic acid) PLLA is studied as compared with poly(ethylene glycol) (PEG-OH). It is found that PEG-BA is miscible with PLLA and shows good plasticizing effect. Because PEG-OH having the same degree of polymerization is immiscible with PLLA, the end group in PEG-BA, i.e., benzoate, plays an important role in the miscibility. Furthermore, PEG-BA does not induce the PLLA degradation at melt-processing, whereas PEG-OH leads to the hydrolysis degradation. Finally, the addition of PEG-BA pronounces the crystallization rate of PLLA at low crystallization temperatures and thus enhances the degree of crystallinity at conventional processing. Consequently, the temperature dependence of dynamic mechanical properties are similar to that for isotactic polypropylene. 相似文献
15.
Marina F. Cosate de Andrade Patrícia M. S. Souza Otávio Cavalett Ana R. Morales 《Journal of Polymers and the Environment》2016,24(4):372-384
This paper presents a life cycle assessment (LCA) comparing three forms of poly(lactic acid) (PLA) disposal: mechanical recycling, chemical recycling and composting. The LCA data was taken from lab scale experiments for composting and hydrolysis steps. Polymerization data in chemical recycling was obtained from computer simulation. Mechanical recycling data from lab scale were combined with the data from a plastics commercial mechanical recycling plant. The analysis considered two different product systems based on the input of the recycled PLA in the product system. Considering the categories: climate change, human toxicity and fossil depletion, the LCA showed that mechanical recycling presented the lowest environmental impact, followed by chemical recycling and composting. Among the forms of recycling, the most important input was the electricity consumption. 相似文献
16.
Poly(lactic acid) (PLA) is increasingly utilized as an alternative to petroleum-based polymers in order to reduce their impact on the environment. The monomer of PLA is mainly produced from corn, which, in addition to its food utilization, can be also used for the production of bioethanol or biofuels. In this work the depolymerization (chemical recycling) of PLA pellets in a batch reactor at temperatures near the melting temperature of solid PLA has been investigated to produce lactic acid. New experimental data are presented and a kinetic model is provided for a first analysis. With a residence time less than 120 min, a yield of lactic acid greater than 95 % has been obtained at temperatures of 160 and 180 °C for pressure equal to water vapour pressure and a water/PLA ratio by weight equal ~10. 相似文献
17.
Nita Tudorachi Rodica Lipsa Cornelia Vasile Fanica Mustata 《Journal of Polymers and the Environment》2013,21(4):1064-1071
The synthesis and characterization of poly(lactic acid)-co-aspartic acid copolymers (PLA-co-Asp) were presented. Subsequently, the synthesized PLA-co-Asp copolymers were tested as biodegradable carriers in drug delivery systems. PLA-co-Asp copolymers were synthesized by solution polycondensation procedure, using different molar ratios PLA/l-aspartic acid (2.33/1, 1/1, 1/2.33), manganese acetate and phosphoric acid as catalysts and N,N′-dimethyl formamide (DMF)/toluene as solvent mixture. The copolymers were characterized by FT-IR and 1H-NMR spectroscopy, gel permeation chromatography (GPC), DSC and TG-DTG analyses. Diclofenac sodium, a non steroidal anti-inflammatory drug was subsequently loaded into PLA-co-Asp copolymers. The in vitro drug release experiments were done by dialysis of the copolymer/drug systems, in phosphate buffer solution (pH = 7.4, at 37 °C) and monitored by UV spectroscopy. 相似文献
18.
19.
Daniele Battegazzore Jenny Alongi Alberto Frache 《Journal of Polymers and the Environment》2014,22(1):88-98
Natural filler/poly(lactic acid)-Based composites have been prepared by melt blending in order to investigate the resulting thermal, mechanical, and oxygen permeability properties. To this aim, several wastes or by-products (namely, cellulose fibers, wood sawdust, hazelnut shells, flax fibers, corn cob and starch) have been used, ranging from 10 to 30 wt%. The presence of these fillers is responsible of a slight reduction of the polymer degradation temperature in nitrogen as well as of a significant increase of the storage modulus as a function of the filler content. The experimental data obtained by dynamic mechanical analysis have been mathematically fitted, employing three micromechanical models (namely, Voigt, Reuss and Halpin–Tsai). Furthermore, the presence of cellulose or starch has turned out to significantly reduce the polymer oxygen permeability. Finally, in order to fully assess the feasibility of such materials, an economic analysis has been carried out and discussed. 相似文献
20.
Increasing demand in the use of poly(lactic acid) (PLA) leads to a debate about using potential foodstuffs for plastic production and a moral issue when starvation problem is taken into account. One of the solutions is recycling of PLA; however, recycling results in property losses during melt processing due to low thermal stability of PLA. This study focuses on using chain extenders to offset thermal degradation of recycled PLA. The effects of a diisocyanate and a polymeric epoxidized chain extender on the properties of the recycled poly(lactic acid) were investigated. In order to mimic the recycling process, PLA was subjected to thermo-mechanical degradation using a laboratory scale compounder. Chain extender type, loading and mixing time were investigated. On-line rheology and intrinsic viscosity measurements of PLA before and after chain extension confirmed that the molecular weight increased. Dynamic mechanical analysis, rheology and tensile tests revealed that the chain extenders led to a significant increase in modulus, strength and melt-viscosity. It was found that diisocyanate had slightly higher and faster chain extension reactivity than polymeric extender. Differential scanning calorimetry results showed an increase in the crystallization temperature due to the branched and extended chain structure. 相似文献