首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Introduction  

Acidic and metal(oid)-rich topsoils resulted after 34 years of continuous operations of a copper smelter in the Puchuncaví valley, central Chile. Currently, large-scale remediation actions for simultaneous in situ immobilization of metals and As are needed to reduce environmental risks of polluted soils. Aided phytostabilization is a cost-effective alternative, but adequate local available soil amendments have to be identified and management options have to be defined.  相似文献   

2.
Wang Z  Shan XQ  Zhang S 《Chemosphere》2002,46(8):1163-1171
Rhizosphere is a microbiosphere and has quite different chemical, physical and biological properties from bulk soils. A greenhouse experiment was performed to compare the difference of fractionation and bioavailability of trace elements Cr, Ni, Zn, Cu, Pb and Cd between rhizosphere soil and bulk soil. In the meantime, the influence of air-drying on the fractionation and bioavailability was also investigated by using wet soil sample as a control. Soils in a homemade rhizobox were divided into four zones: rhizosphere, near rhizosphere, near bulk soil and bulk soil zones, which was designated as S1, S2, S3 and S4. Elemental speciations were fractionated to water soluble, exchangeable and carbonate bound (B1), Fe-Mn oxide bound (B2), and organic and sulfide bound (B3) by a sequential extraction procedure. Speciation differences were observed for elements Cr, Ni, Zn, Cu, Pb and Cd between the rhizosphere and bulk soils, and between the air-dried and wet soils as well. The concentrations of all six heavy metals in fraction B1 followed the order of S2 > S3 > S1 > S4 and for B2, the order was S2 > S3 S4 > S1. For B3, the order was S1 > S3 S4 > S2, while for Cd the order was S2 > S3 approximately/= S4 > S1. The air-drying increased elemental concentration in fractions B1 and B2 by 20-50% and decreased in fraction B3 by about 20-100%. Correlation analysis also indicated that the bioavailability correlation coefficient of fraction B1 in rhizosphere wet soil to plants was better than that between either air-dried or nonrhizosphere soils. Therefore, application of rhizosphere wet soils should be recommended in the future study on the speciation analysis of trace elements in soils and bioavailability.  相似文献   

3.

Background, aim, and scope  

Zinc is an essential micronutrient element but its concentrations found in contaminated soils frequently exceed those required by the plant and soil organisms, and thus create danger to animal and human health. Phytoremediation is a technique, often employed in remediation of contaminated soils, which aims to remove heavy metals or other contaminants from soils or waters using plants. Arabidopsis (A.) halleri ssp. gemmifera is a plant recently found to be grown vigorously in heavy metal contaminated areas of Japan and it contained remarkably high amount of heavy metals in its shoots. However, the magnitude of Zn accumulation and tolerance in A. halleri ssp. gemmifera need to be investigated for its use as a phytoremediation plant.  相似文献   

4.

Background, aim and scope  

The paper presents concentrations of trace elements in blood of homebred animals (cows and sheep) from Southern Serbia (Bujanovac) and the contents of natural and anthropogenic radionuclides and some heavy metals in feed. The region of Southern Serbia was exposed to contamination by depleted uranium ammunition during NATO attacks in 1999 and therefore, is of great concern to environmental pollution and human and animal health.  相似文献   

5.

Introduction  

A chemometric evaluation has been done to classify metal ions in soils and to determine whether or not the gastric and intestinal phases of a physiologically based extraction test bear any relation to any of the phases of the four-stage Community Bureau of Reference (BCR) extraction protocol.  相似文献   

6.

Background, aim and scope  

Murano’s glass-makers have held a monopoly on quality glass-making for centuries known all over the world. Artistic glass manufacture entails exposure to complex mixtures of pollutants, including metals. A few studies have reported high levels of trace elements in marine waters, sediments and mussels around Murano and shown that emissions from Murano glass-making workshops significantly influence air quality in the Venice area. Nevertheless, to date, there is very little information on atmospheric concentrations and virtually none on atmospheric deposition fluxes of trace elements around the island. This study presents data on the distribution of trace elements in the air and atmospheric depositions around Murano, based on a 2-year sampling period.  相似文献   

7.

Background, aim, and scope  

The success of phytoextraction depends upon the identification of suitable plant species that hyperaccumulate heavy metals and produce large amounts of biomass using established agricultural techniques. In this study, the Mediterranean saltbush Atriplex halimus L., which is a C4 perennial native shrub of Mediterranean basin with an excellent tolerance to drought and salinity, is investigated with the main aim to assess its phytoremediation potential for Pb and Cd removal from contaminated soils. In particular, the influence of soil salinity in metal accumulation has been studied as there is notable evidence that salinity changes the bioavailability of metals in soil and is a key factor in the translocation of metals from roots to the aerial parts of the plant.  相似文献   

8.

Background, aim and scope  

Mixed pollution with trace elements and organic industrial compounds is characteristic for many spill areas and dumping sites. The danger for the environment and human health from such sites is large, and sustainable remediation strategies are urgently needed. Phytoremediation seems to be a cheap and environmentally sound option for the removal of unwanted compounds, and the hyperaccumulation of trace elements and toxic metals is seemingly independent from the metabolism of organic xenobiotics. However, stress reactions, ROS formation and depletion of antioxidants will also cause alterations in xenobiotic detoxification. Here, we investigate the capability of plants to detoxify chlorophenols via glutathione conjugation in a mixed pollution situation.  相似文献   

9.
The distribution and chemical fractionation of heavy metals retained in mangrove soils receiving wastewater were examined by soil column leaching experiments. The columns, filled with mangrove soils collected from two swamps in Hong Kong and the People's Republic of China, were irrigated three times a week for 150 days with synthetic wastewater containing 4 mg l(-1) Cu, 20 mg l(-1) Zn, 20 mg l(-1) Mn and 0.4 mg l(-1) Cd. Soil columns leached with artificial seawater (without any heavy metals) were used as the control. At the end of the leaching experiments, soil samples from each column were divided into five layers according to its depth viz. 0-1, 1-3, 3-5, 5-10 and > 10 cm, and analyzed for total and extractable heavy metal content. The fractionation of heavy metals in the surface soil samples (0-1 cm) was investigated by the sequential extraction technique. In both types of mangrove soils, the surface layer (0-1 cm) of the columns receiving wastewater had significantly higher concentrations of total Cu, Cd, Mn and Zn than the control. Concentrations declined significantly with soil depth. The proportion of exchangeable heavy metals in soils receiving wastewater was significantly higher than that found in the control, about 30% of the total heavy metals accumulated in the soil masses of the treated columns were extracted by ammonium acetate at pH 4. The sequential extraction results show that in native mangrove soils (the soils without any treatment), the major portion of Cu, Zn, Mn and Cd was associated with the residual and precipitated fractions with very low concentrations in more labile phases. However, in mangrove soils receiving wastewater, a significantly higher percentage of Mn, Zn and Cd was found in the water-soluble and exchangeable fractions. Copper appeared to be more strongly adsorbed in mangrove soils than the other heavy metals. In general, heavy metal accumulation in the surface mangrove soils collected in Hong Kong was higher than those in the PRC, although the metals in the latter soil type were more strongly bound. These findings suggest that whether the heavy metal retained in managrove soils becomes a secondary source or a permanent sink would depend on the kinds of heavy metals and also the types of mangrove soils.  相似文献   

10.

Introduction  

The content of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in 60 samples from three environmental matrices (soils, sediments, and pine needles) in an effort to assess their distribution on a river basin scale.  相似文献   

11.
Recycling EDTA solutions used to remediate metal-polluted soils   总被引:7,自引:0,他引:7  
The objective of this research was to investigate the recycling of ethylenediamine-tetraacetic acid (EDTA) used for the removal of trace metals from contaminated soils. We successfully used Na2S combined with Ca(OH)2 to precipitate the trace metals allowing us to recycle the EDTA. The results of batch and column leaching experiments show that both Ca-EDTA and Na-EDTA are powerful chelating agents with a similar soil remediation potential. The major advantage of Ca-EDTA is the preservation of soil organic matter. We found that Na2S was capable of separating the metals Cd, Cu and Pb from EDTA; however, the precipitation of Zn required the addition of Ca(OH)2. After reusing the reclaimed EDTA seven times, over a 14-day period, EDTA reagent losses ranged from 19.5% to 23.5%. Successive washing cycles enhanced the removal of trace metals from contaminated soils. The metal sulfide precipitates contain high concentrations of metals and could potentially be recycled.  相似文献   

12.

Background, aim, and scope  

Biowaste contains compounds of agricultural value such as organic carbon, nutrients, and trace elements and can partially replace mineral fertilizer (MIN) and improve the physical properties of the soil. However, the obvious benefits of land spreading need to be carefully evaluated against potential adverse effects on the environment and human health. Environmental contamination resulting from biowaste application is one of the key variables when assessing cost/benefits. This study provides data on the resulting concentration of polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in the soil column as a result of the different types of fertilizers.  相似文献   

13.
Heavy metals of the Tibetan top soils   总被引:1,自引:0,他引:1  

Objective

Due to its high elevation, rare human activities and proximity to south Asia where industries are highly developed, it is required to investigate the fragile environment of the Tibetan Plateau. We are aiming to obtain the concentration level, source, spatial distribution, temporal variation and potential environmental risk of Tibetan soils.

Methods

A total of 128 surf ace soil samples were collected and analyzed f or V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb, and an additional 111 samples were analyzed f or Hg and total organic carbon. Concentration comparisons coupled with multivariate statistics were used to analysis the sources of elements of soils. We also carried out Risk assessment on the soils.

Results

Concentrations of Hg, Cr, Ni, Cd and Pb are slightly higher than those of the late 1970s. Concentrations of Cr and Ni are higher than averaged world background values. Tibetan soils present a high natural As concentration level.

Discussion

Anthropogenic sources may partly contribute to the elevated Hg, Cd and Pb concentrations. Cr and Ni are mainly originated from soil parent materials. Soil elements in Anduo and Qamdo regions may threaten the health of local people.

Conclusion

Heavy metal elements of Tibetan Plateau are mainly from the natural source. Arsenic present a high background level. Soil elements in Anduo and Qamdo regions may threaten the health of local people, which should be of concern to scientists and the government.  相似文献   

14.
The concentration and loading distribution of trace metals (Cu, Zn, Pb, Co, Ni, Cr, and Mn) and major elements (Al, Ca, Fe, and Mg) in different particle size fractions (2000-280, 280-100, 100-50, 50-10, 10-2, and <2 μm) of surface soils from highly urbanized areas in Hong Kong were studied. The enrichment of Pb, Cu, and Zn in the urban soils was strongly influenced by anthropogenic activities, and Pb accumulated in fine particles was mainly derived from past vehicular emissions as shown by Pb isotopic signatures. Trace metals primarily accumulated in clay, fine silt, and very fine sand fractions, and might pose potential health risks via the inhalation of resuspended soil particles in the air (PM10 or PM2.5), and ingestion of adhered soils through the hand-to-mouth pathway. The mobility, bioavailability, and human bioaccessibility of Pb and Zn in bulk soils correlated significantly with metal concentrations in fine silt and/or very fine sand fractions.  相似文献   

15.

Size-resolved trace metal concentrations at two background sites were assessed during a 1-year observation campaign, with the measurements performed in parallel at two mountain sites, where Mt. Dinghu (DHS) located in the rural region of Pearl River Delta (PRD) and Mt. Gongga (GGS) located in the Tibetan Plateau region. In total, 15 selected trace elements (Mg, Al, K, V, Mn, Fe, Cu, Zn, As, Mo, Ag, Cd, Ba, Tl, and Pb) in aerosol samples were determined using inductively coupled plasma mass spectrometry (ICPMS). The major metals in these two mountain sites were Fe, K, Mg, and Ca with concentrations ranging between 241 and 1452 ng/m3, 428 and 1351 ng/m3, 334 and 875 ng/m3, and 376 and 870 ng/m3, respectively, while the trace metals with the lowest concentrations were Mo, Ag, Cd, and Tl with concentrations lower than 4 ng/m3 in DHS and 2 ng/m3 in GGS. The pronounced seasonal variability in the trace elements was observed in DHS, with lower concentrations in spring and summer and relatively high in winter and autumn, whereas seasonal variance of trace elements is hardly observed in Mt. Gongga. The size distribution pattern of crustal elements of Al, Mg, K, Ba, and Fe was quite similar in DHS and GGS, which were mainly found in coarse particles peaked at 4.7–5.8 μm. In addition, V, Mo, Ag, and Tl were also concentrated in coarse particles, although the high enrichment factor (EF?>?100) of which suggested anthropogenic origin, whereas trace metals of Cd, Mn, Zn, As, Cu, and Pb concentrated in fine mode particles. Specifically, these trace metals peak at approximately 1.5 μm in DHS, while those in GGS peaked at diameter smaller than 0.3 μm, indicating the responsible for long-range transport from the far urban and industrialized areas. Multivariate receptor model combined with the enrichment factor results demonstrated that the trace elemental components at these two background sites were largely contributed from the fossil fuel combustion (55.4% in DHS and 44.0% in GGS) and industrial emissions factors (20.1% vs. 26.5%), which are associated with long distance transport from the coastal area of Southeast China and the Northwestern India, respectively, as suggested by the backward air mass trajectory analysis. Local sources from soil dust contributed a minor variance for trace elements in DHS (9.7%) and GGS (13.8%), respectively.

  相似文献   

16.
Plant and soil have been identified as major sink of pollutants in the environment. We evaluated the reliability of biomonitoring of heavy metals in Tshwane area with the use of leaves of Jacaranda mimosifolia. The concentrations of heavy metals such as Ca, Mg, Fe, Pb, Zn, Cu, Sb were measured in leaves of J. mimosifolia and soils collected from 10 sites in the city of Tshwane during two sampling periods. The metals were analyzed with the use of ICP-MS. The result shows significant differences in the concentration of trace metals in all the sites (p < 0.01). The differences between the two sampling periods were statistically significant (p < 0.01). Concentration of metals from high traffic and industrial sites were significantly higher than in the residential areas (p < 0.01). Concentration factor suggests that translocation of metals from roots to leaves could be relevant only for some metals such as Ca, Mg and Sb. The study reveals an anthropogenic source for the trace metals. Leaves of J. mimosifolia were found to be a useful biomonitor of the determined trace metals.  相似文献   

17.

Background  

Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity.  相似文献   

18.

Background, aim, and scope  

Dissolved organic matter, measured as dissolved organic carbon (DOC), is an important component of aquatic ecosystems and of the global carbon cycle. It is known that changes in DOC quality and quantity are likely to have ecological repercussions. This review has four goals: (1) to discuss potential mechanisms responsible for recent changes in aquatic DOC concentrations; (2) to provide a comprehensive overview of the interactions between DOC, nutrients, and trace metals in mainly boreal environments; (3) to explore the impact of climate change on DOC and the subsequent effects on nutrients and trace metals; and (4) to explore the potential impact of DOC cycling on climate change.  相似文献   

19.
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.  相似文献   

20.

Purpose  

The aim of the present study is to propose a nonlinear model which provides an indicator for the maximum phytoextraction of metals to help in the decision-making process. Research into different species and strategies plays an important role in the application of phytoextraction techniques to the remediation of contaminated soil. Also, the convenience of species according to their biomass and pollutant accumulation capacities has gained important space in discussions regarding remediation strategies, whether to choose species with low accumulation capacities and high biomass or high accumulation capacities with low biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号