首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites were prepared by the ultrasonic dispersion and liquid boiling method. In succession, they were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Acid red B as a model dye compound was degraded under solar light irradiation to evaluate the photocatalytic activities of the Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites. We found that the photocatalytic activity of ZnO–TiO2 composite can be enhanced by adding an appropriate amount of Er3+:YAlO3. We reviewed influencing factors, such as Er3+:YAlO3 content, heat-treated temperature and heat-treated time on the photocatalytic activity of the Er3+:YAlO3/ZnO–TiO2 composites. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+:YAlO3/ZnO–TiO2 amount and solution acidity on the photocatalytic degradation of acid red B dye in aqueous solution were investigated in detail. Simultaneously, the degradation and comparison of other dyes such as methyl orange (MO), rhodamine B (RM-B), azo fuchsine (AF), congo red (CG-R) and methyl blue (MB) were also reviewed. In addition, we attempted to explore both the principle of possible excitation of Er3+:YAlO3/ZnO–TiO2 under solar light irradiation and the mechanism of photocatalytic degradation.  相似文献   

2.
The comparison of phenol sorption on phenyltrimethylammonium (PTMA)- and benzyltrimethylammonium (BTMA)-bentonite shows a clear difference as far as phenol sorption isotherms are concerned. For PTMA-bentonite the sorption isotherm is of a straight-line character which results from simple partitioning of phenol between the aqueous and organic phases sorbed on the bentonite surface. For BTMA-bentonite the isotherm has a convex shape, characteristic of physicochemical sorption.For the first time a three-parametric model, including the dissociation constant of phenol pKa, distribution constant of phenol Kdphen and phenolate anion Kdphen between the aqueous phase and the bentonite phases is used for the evaluation of phenol sorption on organoclays with pH change. The model shows that the values of Kdphen are higher than those of Kdphen for all investigated initial phenol concentrations.The inspection of the FTIR spectrum of BTMA-bentonite loaded with phenol in the regions 1300–1600 and 1620–1680 cm−1 shows the features of π–π electron interaction between the benzene rings of phenol and the BTMA cation together with the phenol–water hydrogen bond strengthened by this interaction.  相似文献   

3.
Hydrodynamic cavitation (HC)-based treatments have been proposed for the degradation of phenol as a toxic pollutant. The present work aimed to optimize the degradation of phenol using HC by means of Doehlert experimental design, which has not been previously addressed. Initially, operational parameters of hydraulic characteristics of the pump, inlet pressure, solution pH, and initial concentration were optimized; later, the effects of pH solution and H2O2 loading or initial pollutant concentration on phenol degradation were explored using the Doehlert experimental design. It was observed that phenol degradation is strongly dependent on the pH of the solution. Also, the acidic condition favors the formation of hydroxyl radicals and thus, the degradation of phenol. Based on the Doehlert matrix, the 94.1% phenol degradation and 68.60% total organic carbon (TOC) were obtained in 180 min at 304.5 mg/L of hydrogen peroxide at an initial concentration of 20 mg/L, 2.0 pH, and 90 psi inlet pressure, providing a cavitational yield of 6.33 × 10−6 mg/J and minimum treatment cost of US$/L 0.13. Overall, it has been observed that HC can be a promising route for the removal of pollutants (phenol) effectively using hydrogen peroxide as an additive.  相似文献   

4.
Solvent extraction of iron(III) from actual sulphate waste pickle liquor was investigated using trialkylphosphine oxide diluted with kerosene. The waste pickle liquor was procured from a local company which deals with the manufacturing of pipes and tubes made of iron and steel. Various parameters were studied to optimise a suitable condition for the maximum extraction of iron. The composition of the aqueous feed used in the experiment was 60.88 g/L Fe(III), 53 g/L acid with traces of Cu, Ni and Co. An ambient extraction at 30 °C yielded acceptable kinetics and loading efficiency for 40% trialkylphosphine oxide with a saturated loading capacity of 51.85 g/L in four contacts at O/A ratio of 1/1 in a multiple contact mode. Iron from the loaded organic was stripped using various strippants such as distilled water, H2SO4 and oxalic acid. Since only 32% of loaded Fe could be stripped with 2 M H2SO4 in five contacts, further stripping was done with 5% oxalic acid which showed a very promising result. It was found that almost 100% of Fe(III) could be stripped out with 5% oxalic acid at O/A of 1/1 in five contacts.  相似文献   

5.
The selective catalytic reduction (SCR) rate of NO with N-containing reducing agents can be enhanced considerably by converting part of NO into NO2. The enhanced reaction rate is more pronounced even at lower temperatures by using an equimolar mixture of NO and NO2 (fast SCR reaction). The oxidation characteristics of NO over catalyst Pt/TiO2 have been determined in a fixed bed reactor (8 mm-ID) with different concentrations of oxygen, nitric oxide and nitrogen dioxide in the presence of 8% water. The conversion of NO to NO2 increases with increasing oxygen (O2) concentration from 3 to 12%, but it levels off at higher O2 concentrations. The NO conversion to NO2 decreases with increasing NO concentration and it also decreases by an addition of NO2 in the feed stream. Therefore, the oxidation of NO over Pt/TiO2 catalyst could be auto-inhibited by the reaction product of NO2. The effects of CO and SO2 on NO oxidation characteristics have also been determined. In fact, the presence of SO2 significantly suppresses oxidation of NO but due to the less stability of sulfate on anatase structure in TiO2, it becomes less significant. On the other hand, the presence of CO increases NO oxidation significantly due to the auto-inhibition effect by CO. Moreover, the effect of SO2/CO on NO oxidation has also been determined and it was observed that NO oxidation decreases with the increase in SO2/CO ratio.  相似文献   

6.
The formation and spray coating, with Degussa P25 titanium dioxide (TiO2), of a room temperature curable resin to form a photocatalytically active material is described in this paper. The TiO2 surface layers produced have been characteristed with the aid of scanning electron microscope analysis. The photocatalytic activity of the samples tested using a gas phase continuous flow type photoreactor, the test pollutant being propene. Analysis of the test results indicates the potential of TiO2 coated polymers to form effective photocatalytic materials, with the potential to improve indoor air quality and reduce the energy consumption of ventilation systems.  相似文献   

7.
The present work investigated color and biochemical oxygen demand (COD) removal from treated landfill leachate via advanced oxidative processes (AOPs) artificially emitted. The AOP H2O2/UV, TiO2/UV, and photolysis were tested in two bench‐scale photoreactors: The first one with UV‐C lamp and the other with UV‐A lamp associated or not with coagulation / flocculation pretreatment. Crude leachate samples with pH ranging from 8 to 3 were used, and time varied in 30, 45, and 60 minutes. Experiments were performed in two stages: step 1 with a 20 mL volume from each sample and step 2 with repetition of the best results from the previous step, adopting the 150 mL volume. In step 1, the AOP applied in the crude leachate sample showed the best results, standing out H2O2/UV‐C with 30 minutes and TiO2/UV‐A with 60 minutes. In step 2, H2O2/UV‐C had a 60% color removal and 25% COD reduction, while TiO2/UV‐A had a 10% color removal and 20% COD reduction. Therefore, the H2O2/UV‐C process was the most efficient, because the complex characteristics of the effluent interfered in the TiO2/UV‐A efficiency, but it is necessary to eliminate the process interferences. The use of artificial radiation is a viable alternative; however, it can be costly, being relevant in the associations between processes with artificial UV and solar UV, as the natural radiation becomes more attractive and allows the process operating costs reduction.  相似文献   

8.
In this study, the photocatalytic activity of TiO2 nanofibers toward ammonia borane hydrolysis has been strongly modified by doping the nanostructure by ZnO and Fe2O3 oxides. Due to the differences in the work function and band gap energy among the three semiconductors (TiO2, ZnO and Fe2O3), illumination of TiO2 leads to accumulate the electrons and holes on the conduction and valance bands of Fe2O3 and ZnO, respectively. Accordingly, the experimental results indicated that the surface of the obtained nanofibers is very active which results in an instant hydrolysis of ammonia borane molecules reaching the active zone surrounding the nanofibers. Moreover, negative activation energy was determined as increasing the temperature led to decrease the photocatalytic performance. Furthermore, kinetic studies indicated that the heterogeneous catalytic reaction describing the ammonia borane hydrolysis process is zero order which additionally supports the super activity of the introduced nanofibers. It was also observed that Fe2O3 content in the introduced nanofibers has distinct influence as the best performance was obtained at 1 wt%. The modified TiO2 nanofibers were prepared by calcination of electrospun nanofibers composed of titanium isopropoxide, zinc acetate and iron acetate in air at 700 °C for 1 h. Overall, the present study opens a new avenue to overcome the fast electrons/holes recombination dilemma facing TiO2-based nanostructures.  相似文献   

9.
This paper discusses the adsorption capacity of silica gel sludge for phenol removal from aqueous solution. Kinetic experiments showed that phenol adsorption was completed after 2 h. Adsorption isotherms were measured for phenol from aqueous solution onto silica gel sludge under various pHs and temperatures. Results showed that the adsorption capacities for phenol was increased as pH decreased from 6.5 to 2. Temperature also was found to affect the adsorption isotherm. As temperature increases from 30 to 50°C, the adsorption capacity increases. The adsorption equilibrium of phenol on silica gel sludge was described by the linear Freundlich and Langmuir models. Furthermore, results showed that the isotherm parameters fit both linearized Langmuir and Freundlich adsorption isotherms. The Freundlich and Langmuir parameters at optimum pH was found as K f=2.89, 1/n=0.23 and K d=22.0, q m=7.98, respectively. Whereas, for those at optimum temperature it was observed as K f=2.87, 1/n=0.16 and K d=20.93, q m=7.91, respectively.  相似文献   

10.
The ability of Turkish illitic clay (TIC) in removal of Cd(II) and Pb(II) ions from aqueous solutions has been examined in a batch adsorption process with respect to several experimental conditions including initial solution pH, contact time, initial metal ions concentration, temperature, ionic strength, and TIC concentration, etc. The characterization of TIC was performed by using FTIR, XRD and XRF techniques. The maximum uptake of Cd(II) (11.25 mg g−1) and Pb(II) (238.98 mg g−1) was observed when used 1.0 g L−1 of TIC suspension, 50 mg L−1 of initial Cd(II) and 250 mg L−1 of initial Pb(II) concentration at initial pH 4.0 and contact time of 240 min at room temperature. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin Radushkevich (D-R) isotherm models. The monolayer adsorption capacity of TIC was found to be 13.09 mg g−1 and 53.76 mg g−1 for Cd(II) and Pb(II) ions, respectively. The kinetics of the adsorption was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The results showed that the adsorption of Cd(II) and Pb(II) ions onto TIC proceeds according to the pseudo-second-order model. Thermodynamic parameters including the Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes indicated that the present adsorption process was feasible, spontaneous and endothermic in the temperature range of 5–40 °C.  相似文献   

11.
(CdS)x/(ZnS)1–x nanoparticles were synthesized as a visible light-driven photocatalyst using the stepped microemulsion technique with a series of the ratio factors (x). The photocatalytic test results showed that (CdS)x/(ZnS)1-x with x = 0.8 had the highest photo-reactivity for H2 production from water under visible light. The composite (CdS)0.8/(ZnS)0.2 catalyst had a heterogeneous structure that exhibited a much greater photocatalytic hydrogen production activity than either pure CdS or the homogeneous Cd0.8Zn0.2S solid solution. ZnS deposition also was shown to largely improve the stability of CdS in the heterostructured CdS/ZnS catalyst. Thermal treatment of the catalyst, i.e., annealing (CdS)0.8/(ZnS)0.2 at 723 K, improved the crystallinity of the catalyst and increased its photocatalytic H2 production rate by more than 36 times. Deposition of Ru on the surface of the catalyst particles by in situ photo-deposition further increased the photo-H2 generation rate by 3 times. The photocatalyst of 0.5%Ru/CdS/ZnS achieved the highest H2 production activity, at a rate of 12650 μmol/g-h and with a light to hydrogen energy conversion efficiency of 6.5%.  相似文献   

12.
The required properties of a CO2 sorbent for sorption-enhanced steam–methane reforming (SESMR) are derived following a top-down approach. First the required CO2 equilibrium pressure of the sorbent is derived from system restraints, then a suitable sorbent is searched for matching the required CO2 pressure. The selected material, barium orthotitanate Ba2TiO4, has been characterized and tested on lab-scale. From this follows that the capacity and kinetics are poor compared with CaO, which has been investigated for SESMR. The best use of Ba2TiO4 is in combination with CaO, making use of the good properties of both: the high capacity and good kinetics of CaO, and the low CO2 equilibrium pressure of Ba2TiO4 allowing high CH4 conversion at relatively low steam-to-methane ratios (3–4).  相似文献   

13.
This research article demonstrates biodiesel synthesis through the methanolysis of the oily contents (4.02 ± 0.27% w/w on dried basis) of Dictyota dichotoma collected from the coast of Hawksbay, Pakistan. The metal oxides (CaO, MgO, ZnO, and TiO2) used as nanocatalysts were refluxed (5% K2SO4), calcinated (850 °C) and characterized by Atomic Force Microscopy (AFM) which produced 93.2% w/w FAME (biodiesel) at relatively mild condition (5% catalyst, 65 °C, 3 h, 18:1 molar ratio) using CaO. Whereas, MgO, ZnO, and TiO2 produced 92.4%, 72.5%, and 31.8% w/w FAME, respectively at elevated condition (225 °C). Thus, CaO was considered to be the best catalyst among the others. This tri-phase reaction require continuous fast mixing and the yield depends on the reaction parameters like catalyst amount, temperature, reaction time and molar ratio (methanol: oil). The reusability of these heterogeneous catalysts simplified the purification step, reduced the waste generation and make the final product technically and economically viable.  相似文献   

14.
The chilled ammonia process absorbs the CO2 at low temperature (2–10 °C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good perspectives for decreasing the heat requirement. However, a scientific understanding of the processes is required. The thermodynamic properties of the NH3–CO2–H2O system were described using the extended UNIQUAC electrolyte model developed by Thomsen and Rasmussen in a temperature range from 0 to 110 °C and pressure up to 100 bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2 GJ/ton CO2 can be reached.  相似文献   

15.
In this study, porous calcite materials are hydrothermally treated at 200 °C using powder compacts consisting of calcite and glasses composed of silica-rich soda-lime. After treatment, the glasses are converted into calcium aluminosilicate hydrates, such as zeolite phases, which increase their strength. The porosity and morphology of new deposits of hydrothermally solidified materials depend up on the chemical composition of glass. The use of calcite and glass in the hydrothermal treatment plays an important role in the solidification of calcite without thermal decomposition.  相似文献   

16.
Five types of commercially available activated carbons (ACs) were coated with TiO2 nanoparticles prepared using a sol–gel method. Color and trace organics remaining in the actual treated effluent were adsorbed by TiO2 coated ACs. The absorbed organic compounds were then decomposed using a photocatalytic process, and the ACs were regenerated for reuse. The efficiency of the process was assessed by the characterization of true color and A254 (the organics absorption at the wavelength of 254 nm) at the beginning and the end of the experiment. The effects of UV light source, UV irradiation time, hydrogen peroxide and ultrasound on the efficiency of photocatalytic regeneration were also investigated. Significant differences in the efficiency were observed between uncoated ACs and TiO2 coated samples. Among the 5 types of ACs tested, AC-3, AC-4 and their coated ones achieved better efficiency in color and A254 removal, with around 90% or more color and A254 being removed within 1 h of treatment. The data obtained in this study also demonstrated that the photocatalytic process was effective for decomposing the adsorbed compounds and regenerating the spent TiO2/AC-3. Finally, it was found that this regeneration process could be greatly enhanced with the assistance of H2O2 and ultrasound by reducing the required regeneration time.  相似文献   

17.
Characterization of MSWI fly ash through mineralogy and water extraction   总被引:1,自引:0,他引:1  
This paper investigates the mineralogical characteristics of fresh, aged and hot water extracted MSWI fly ash for providing the baseline information of minerals stability which controls the released heavy metals into the environment. Quantitative determination of bulk phase abundance in the fresh fly ash by the XRD Rietveld refinement method provided composition levels for amorphous and crystalline phases such as potassium tetrachlorozincate (K2ZnCl4), gehlenite, halite, quartz, anhydrite, and feldspar. The minerals association in the fly ash is clearly unstable and subject to mineralogical reactions. The phases of K2ZnCl4, halite and anhydrite in the fresh fly ash were involved in hydration and dissolution/precipitation processes to form new minerals such as the Zn-bearing mineral gordaite, syngenite, gypsum and hydrocalumite. The solubility-controlling phases and extractability of heavy metals were examined in a Soxhlet hot water-extractor. Here the soluble salts were simply removed from fly ash while Ca-, Al-, Si- and SO42−-bearing hydrate minerals were precipitated from the extraction solution. Furthermore, a low release of heavy metals Zn, Pb and Cd in hot water was noticed, indicating a strong retention of the trace metals in the mineral phases remaining in the insoluble fly ash residues.  相似文献   

18.
Co-injection of sulfur dioxide during geologic carbon sequestration can cause enhanced brine acidification. The magnitude and timescale of this acidification will depend, in part, on the reactions that control acid production and on the extent and rate of SO2 dissolution from the injected CO2 phase. Here, brine pH changes were predicted for three possible SO2 reactions: hydrolysis, oxidation, or disproportionation. Also, three different model scenarios were considered, including models that account for diffusion-limited release of SO2 from the CO2 phase. In order to predict the most extreme acidification potential, mineral buffering reactions were not modeled. Predictions were compared to the case of CO2 alone which would cause a brine pH of 4.6 under typical pressure, temperature, and alkalinity conditions in an injection formation. In the unrealistic model scenario of SO2 phase equilibrium between the CO2 and brine phases, co-injection of 1% SO2 is predicted to lead to a pH close to 1 with SO2 oxidation or disproportionation, and close to 2 with SO2 hydrolysis. For a scenario in which SO2 dissolution is diffusion-limited and SO2 is uniformly distributed in a slowly advecting brine phase, SO2 oxidation would lead to pH values near 2.5 but not until almost 400 years after injection. In this scenario, SO2 hydrolysis would lead to pH values only slightly less than those due to CO2 alone. When SO2 transport is limited by diffusion in both phases, enhanced brine acidification occurs in a zone extending only 5 m proximal to the CO2 plume, and the effect is even less if the only possible reaction is SO2 hydrolysis. In conclusion, the extent to which co-injected SO2 can impact brine acidity is limited by diffusion-limited dissolution from the CO2 phase, and may also be limited by the availability of oxidants to produce sulfuric acid.  相似文献   

19.
Experimental work is performed with a 5A zeolite on a small laboratory column with heating from the wall. Carbon dioxide adsorption occurs at atmospheric pressure and different CO2 concentrations in nitrogen. Comparisons of different methods of desorption by heating, purge and/or vacuum are studied. Desorption by heating only leads to almost pure CO2 (around 99% purity) and a recovery nearly linear to the heating temperature, ranging from 45% at 130 °C to 79% at 210 °C. Recovery can be subsequently increased with a nitrogen purge to more than 98% but the recovered carbon dioxide is diluted due to the dispersive character of the desorption wave and the operation time is long. Increasing the flow rate decreases the desorption time but has no effect on the purity because the total purge volume remains about the same. Substitution of the purge step with a vacuum step leads to pure CO2 and almost total recovery. Desorption under vacuum only without heating leads to pure CO2 (around 99% purity) but limited recovery (85% in the present work).Desorption under vacuum seems to be more simple for large-scale applications. When using a water liquid ring pump, the temperature of the ring must be kept as low as possible to provide a high operating capacity.  相似文献   

20.
Chromium(VI)-containing sorbents in the form of sludge or solid residue from treatment processes are often landfilled or used as fill materials, therefore the long-term stability of metal binding is important. The reduction of Cr(VI)–Cr(III) through heat treatment may be a useful detoxification method. After heating at 500, 900, 1000, and 1100 °C for 4 h, the transformation of chemical states of chromium on 105 °C-dried, 7.9% Cr(VI)-doped TiO2 powders was studied on the basis of surface area measurements, scanning electron microscopy (SEM) images, X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) spectra. It was shown that Cr(VI) was reduced to Cr(III) in the Cr(VI)-doped samples after heating within 500–900 °C. The present results also suggested that the chromium octahedral was bridged to the titanium tetrahedral and was incorporated in TiO2 minerals formed after 1000 °C treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号