首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用智能便携式采样器,对钢铁企业生产工艺中的烧结、焦化、炼铁和炼钢4种单元生产工序外排的烟尘进行采样,同步在企业厂区及相邻2个周边村庄采集了3种不同粒径颗粒物(TSP、PM_(10)、PM_(2.5)),运用气相色谱-质谱(GCMS)联用技术分析了7种指示性PCBs和12种类二噁英类PCBs(记作DL-PCBs)质量浓度。分析结果发现:不同生产工序,PCBs的排放特征不同,焦化工序排放的Σ_7PCBs和Σ_(12)DL-PCBs质量浓度最高,分别为647. 85,1422. 62 ng/m~3,其次为烧结工序,Σ_7PCBs质量浓度最低的是炼铁工序,Σ_(12)DL-PCBs质量浓度最低的是炼钢工序。检出的PCBs单体中,质量浓度最高的单体出现在不同的生产工序,烧结工序是PCB81,焦化工序是PCB123,炼铁工序是PCB167,炼钢工序是PCB52。钢铁企业厂址及周边的2个采样点不同粒径颗粒物载带的PCBs与4个工序外排烟尘中检出的单体数目和浓度高低顺序基本一致,说明该地区周边环境空气中PCBs的来源在一定程度上受到钢铁企业外排烟气的影响。颗粒物粒径越细,其所载带的Σ_7PCBs和Σ_(12)DL-PCBs质量浓度越高。由主成分分析可知:钢铁企业周围环境空气颗粒物中PCBs主要来自焦化和烧结工序。钢铁企业内以及周边环境空气颗粒物中的Σ_(12)PCBs的毒性当量值略高于已有报道,存在潜在风险。  相似文献   

2.
典型钢铁行业汞排放特征及质量平衡   总被引:1,自引:1,他引:0  
张雅惠  张成  王定勇  罗程钟  杨熹  徐凤 《环境科学》2015,36(12):4366-4373
以重庆市某钢铁企业各工艺单元的进出物料为研究对象,分析样品总汞及各物料中汞的输入输出量,初步探讨钢铁生产各工序汞的排放特性及其质量平衡.结果发现,各工艺输入物料汞含量为2.93~159.11μg·kg~(-1),其中,高炉所用块矿汞含量最高,其次为烧结以及高炉用煤.输出物料中汞含量为3.09~18.13μg·kg~(-1),除尘灰汞含量最高,其次为转炉渣.该钢铁企业自备焦化厂汞输入量和输出量分别为1 346.74 g·d~(-1)±36.95 g·d~(-1)和177.42 g·d~(-1)±13.73 g·d~(-1),焦化工序中的汞主要来源于焦煤的燃烧.钢铁生产过程中烧结工序汞输入量最高,为1 075.27 g·d~(-1)±60.89 g·d~(~(-1)),占钢铁生产总汞带入量的68.06%,其来源主要是铁矿粉.固体输出物料中,烧结工序输出汞量为14.15 g·d~(-1)±0.38 g·d~(-1),占总固体输出量22.61%.经估算,该钢铁企业2013年汞排放量约为553.83 kg,汞排放因子为0.092 g·t~(-1)钢产量.为控制汞排放,钢铁企业应结合生产实际,进一步降低焦化以及烧结工序能耗水平,或提高原料质量,减少汞的输入.  相似文献   

3.
调研并核算了我国典型钢铁企业烧结、球团、炼焦、高炉炼铁、转炉炼钢、热轧、冷轧、自备电站和石灰窑等工序的烟粉尘年排放量及其占全厂的比例。分析了钢铁厂内烟粉尘排放的重点工序,以及各工序中的主要排放源。筛选出了钢铁企业的十大烟粉尘重点排放源,总计占全厂烟粉尘排放量的80.44%。并为钢铁企业的烟粉尘治理及排放监测提出了建议。  相似文献   

4.
宋晓聪  杜帅  邓陈宁  谢明辉  沈鹏  赵慈  陈忱  刘晓宇 《环境科学》2023,44(12):6630-6642
钢铁行业是中国碳密集度最高的工业行业之一,为分析钢铁行业生命周期碳排放及碳减排潜力,从生命周期角度构建碳排放核算模型,以2020年为例开展实证分析,通过优化废钢使用量、化石燃料燃烧量、电力碳足迹因子以及清洁运输比例4项变量,对钢铁行业生命周期碳减排潜力作预测评估,同时使用敏感性分析确定影响钢铁生命周期碳减排因素的关键程度.结果表明,2020年中国钢铁行业全生命周期二氧化碳(CO2)排放总量约24.04亿t,其中原料获取和加工生产阶段是钢铁行业碳排放的关键环节,占钢铁行业生命周期CO2排放总量的98%以上.从CO2排放源类别分析,化石燃料节约和外购电力清洁化是钢铁行业降碳的重中之重.到2025年,通过推广低碳技术、优化电力结构、增加废钢炼钢量、提高清洁方式运输比例,分别可使钢铁行业实现20%、 6%、 5%和1%的碳减排潜力.化石燃料燃烧量对钢铁行业生命周期CO2排放的影响最显著,电力碳足迹因子和废钢炼钢使用量次之.关于钢铁行业节能低碳技术,短期内以推广轧钢工序与高炉炼铁工序低碳技术为主,未来随着电炉...  相似文献   

5.
钢铁企业的低碳转型,对我国钢铁企业高能效低碳发展、实现我国“双碳”目标起着至关重要的作用。本文分析了我国钢铁企业在能源方面的利用现状和余热资源的主要分布情况以及余热资源的主要利用方式。在能源消耗方面,虽然中国重点钢铁企业吨钢综合能耗在逐年下降,但是由于大部分钢铁企业节能技术较为传统,导致近年来吨钢能耗下降幅度逐渐减小,已经呈现出几乎不变的趋势,在节能技术方面进行创新改革已势在必行。同时,各个钢铁企业技术发展水平不一,导致吨钢能耗最小值与最大值之间相差巨大。在钢铁企业余热资源利用方面,情况依旧不容乐观,虽然炼钢、热轧工序中余热资源利用程度在40%~50%之间,但是焦化、烧结、炼铁工序中余热资源利用程度不足20%,尤其在炼铁工序中,余热资源利用程度仅仅达到10%左右。因此,进行余热回收技术的创新,对钢铁企业降低能耗,提高余热资源利用程度至关重要。最后,本文讨论了新能源(例如生物质能、绿电等)对传统能源的替代作用,使用新能源有助于降低钢铁企业的能耗,从而早日达成“双碳”目标。  相似文献   

6.
叶友斌  邢芳芳  刘锟  甄瑞卿  姜琪 《环境工程》2012,(Z2):224-227,245
根据钢铁行业碳素流和直接排放计算原理,利用温室气体排放分析模型对几家典型大型钢铁联合企业的CO2排放进行了计算,结合钢铁行业的能源消耗情况对钢铁企业的CO2排放结构进行了分析,提出我国钢铁企业CO2的控制重点在于燃料消耗,需从降低高炉燃料比、优化副产煤气尤其是高炉煤气的回收利用、控制烧结固体燃料消耗等几个方面采取措施。  相似文献   

7.
针对钢铁工业氮氧化物减排的紧迫形势,首先介绍了钢铁工业氮氧化物主要排放源,提出了烧结工序和自备电厂是氮氧化物排放的主要污染源,其烟气中氮氧化物控制是钢铁企业氮氧化物减排的重点;其次对钢铁工业氮氧化物生成机理,热力型、燃料型、快速型进行了分析;在此基础上,总结了钢铁工业烧结、自备电厂、焦化、炼铁、轧钢工序氮氧化物污染防治技术途径,为钢铁工业进一步开展氮氧化物减排工作提供了技术支撑.  相似文献   

8.
京津冀地区钢铁行业高时空分辨率排放清单方法研究   总被引:13,自引:0,他引:13  
针对目前京津冀地区钢铁行业大气污染物排放量基数不清,排放清单缺失的现状,以钢铁行业调研、企业在线监测、污染源调查等数据为基础,综合考虑钢铁行业具体工艺设备、环保措施、产能等信息,按照自下而上的方法建立了一套高时空分辨率排放清单.经计算,2012年京津冀地区钢铁企业排放SO2为47.16万t,NOx为37.22万t,烟粉尘为34.15万t,其中烧结和高炉工艺为京津冀钢铁行业污染物的主要来源;从空间分布来看,唐山、邯郸两地区集中了整个京津冀地区一半以上的钢铁企业,其污染物排放量占到了整个区域钢铁企业排放总量的一半以上.  相似文献   

9.
江西省土地利用碳排放空间格局及碳平衡分区   总被引:1,自引:0,他引:1  
二氧化碳浓度升高,导致全球气候变暖,生态环境问题逐渐凸显. 为此,绿色、低碳和循环发展成为我国当前工作重点. 江西省作为长江经济带生态文明建设的重要节点,大规模的城镇化建设导致碳排放量增加. 鉴于此,基于土地利用和能源消费数据构建碳排放量计算模型,探究江西省2000—2018年的碳排放空间格局特征,通过基尼系数、经济贡献系数和生态承载系数等多种分析方法探讨区域内的碳排放空间差异以及碳收支情况,同时从经济和生态的角度进行碳平衡分区并提出针对性的策略. 结果表明:①江西省2000—2018年土地利用碳排放总量逐年上升,从1 215.687×104 t增至4 907.425×104 t,总体表现为净碳源,碳减排压力较大. ②江西省碳排放空间格局呈现北高南低、西高东低的特征,北部和西部地区的碳排放总量明显大于南部和东部地区,其碳排放总量与各区域内的土地利用结构以及能源消费结构密切相关. ③江西省历年的碳补偿率均低于34%且逐年递减,碳补偿率、经济贡献系数和生态承载系数三者均空间差异明显,其中北部地区的碳补偿率低于南部地区,南部地区、东北地区的经济贡献率和生态承载系数高于西部地区. ④基于碳平衡分析,根据净碳排放量、生态承载系数等指标将江西省各地级市划分为4个碳排放发展功能区域,即碳汇功能区、低碳经济区、碳强度控制区、高碳优化区. 研究期内碳汇功能区数量变化较大,逐渐转为低碳经济区;碳强度控制区和高碳优化区数量基本无变化. 研究显示,江西省土地利用碳排放空间差异显著,协同减排的困难较大,为此根据碳平衡分区调整土地利用结构,有利于促进区域协同减排,推动全省低碳经济的发展,缓解因碳排放引起的全球气候变化问题.   相似文献   

10.
京津冀地区钢铁行业污染物排放清单及对PM2.5影响   总被引:1,自引:0,他引:1  
以京津冀地区为研究区域,采取自下而上的方法,建立京津冀地区钢铁行业细化至焦化、烧结和球团、炼铁、炼钢、轧钢等工序的多污染物排放清单.清单估算结果显示,2015年京津冀地区钢铁行业SO2、NOx、TSP、PM10、PM2.5、CO、VOC的排放量分别为38.82、27.23、79.19、53.15、38.68、823.38、26.53万t,其中烧结和球团工序是最主要的污染物排放工序(17.0%~72.0%),其次为炼铁工序(4.6%~42.4%)和轧钢工序(3.5%~35.7%).采用具有污染物来源示踪功能的双层嵌套气象-空气质量模型系统(WRF-CAMx)耦合模型模拟京津冀地区钢铁行业污染物排放对区域大气PM2.5浓度的影响.模拟结果显示:钢铁行业在春夏秋冬这4个季节对京津冀地区PM2.5浓度贡献率分别达到14.0%、15.9%、12.3%、8.7%.各地市中,钢铁行业对唐山市PM2.5影响最大,年均PM2.5浓度贡献率高达41.2%,其次为秦皇岛市、石家庄市、邯郸市,年均PM2.5浓度贡献率分别达到19.3%、15.3%、15.1%.  相似文献   

11.
在钢铁行业持久性有机污染物产生排放过程分析的基础上,提出持久性有机污染物污染防控对策。首先,阐述持久性有机污染物的定义并进行来源和特征分析;其次,从钢铁行业产生持久性有机污染物的三个主要工艺(焦化、电弧炉冶炼和烧结)分析持久性有机污染物产生原理、过程及产生量;最后,提出钢铁行业持久性有机污染物污染防控手段,包括源头预防、电弧炉冶炼和烧结等工艺过程控制,物理法、化学法和生物法等终端治理方法三个方面,并对持久性有机污染物污染控制进行展望。  相似文献   

12.
选取涵盖钢铁炼制全流程的典型企业,综合采用不同核算方法估算比较了该企业挥发性有机物(VOCs)排放结果;并在此基础之上,通过氟聚化合物气袋、SUMMA罐采样及气相色谱质谱联用仪(GC-FID/MS)分析方法,对烧结、焦化、热轧和冷轧等工序废气中VOCs浓度水平及排放特征进行监测.结果表明,整个厂区VOCs年排放量为430.82t,其中工艺有组织排放占66.0%,储罐18.5%;烧结机头和焦炉推焦排放口VOCs及非甲烷总烃(NMHC)浓度高于其他点位;各工序排放的芳香烃占比较高,其中焦化装煤除尘和焦炉推焦排放口芳香烃占90%以上;烧结工序CS2占比最高(36.6%),其次为苯和甲苯;焦化工序占比靠前的物种为1,2,4-三甲基苯、邻甲乙苯、1,4-二乙基苯、1,2,3-三甲基苯和1,3,5-三甲基苯等;热轧工序与其他工序有一定区别,车间无组织排放芳香烃和烷烃占比均在35%左右,排放靠前的物种除芳香烃外还有高碳烷烃,如十一烷、十二烷和正丁烷等;冷轧工序有组织和无组织排放主要物种较为类似,均为芳香烃物种,如乙基苯、间/对二甲苯、甲苯、苯和邻二甲苯.不同工艺环节排放物种存在一定差异,但主要以焦化副产物(芳香烃)和烧结燃烧产物(CS2)为主,建议钢铁行业有针对性地加强浓度高、活性高和毒性大的组分控制.  相似文献   

13.
选取涵盖钢铁炼制全流程的典型企业,综合采用不同核算方法估算比较了该企业挥发性有机物(VOCs)排放结果;并在此基础之上,通过氟聚化合物气袋、SUMMA罐采样及气相色谱质谱联用仪(GC-FID/MS)分析方法,对烧结、焦化、热轧和冷轧等工序废气中VOCs浓度水平及排放特征进行监测.结果表明,整个厂区VOCs年排放量为430.82t,其中工艺有组织排放占66.0%,储罐18.5%;烧结机头和焦炉推焦排放口VOCs及非甲烷总烃(NMHC)浓度高于其他点位;各工序排放的芳香烃占比较高,其中焦化装煤除尘和焦炉推焦排放口芳香烃占90%以上;烧结工序CS2占比最高(36.6%),其次为苯和甲苯;焦化工序占比靠前的物种为1,2,4-三甲基苯、邻甲乙苯、1,4-二乙基苯、1,2,3-三甲基苯和1,3,5-三甲基苯等;热轧工序与其他工序有一定区别,车间无组织排放芳香烃和烷烃占比均在35%左右,排放靠前的物种除芳香烃外还有高碳烷烃,如十一烷、十二烷和正丁烷等;冷轧工序有组织和无组织排放主要物种较为类似,均为芳香烃物种,如乙基苯、间/对二甲苯、甲苯、苯和邻二甲苯.不同工艺环节排放物种存在一定差异,但主要以焦化副产物(芳香烃)和烧结燃烧产物(CS2)为主,建议钢铁行业有针对性地加强浓度高、活性高和毒性大的组分控制.  相似文献   

14.
中国钢铁行业二氧化碳排放达峰路径研究   总被引:2,自引:2,他引:0       下载免费PDF全文
钢铁行业是我国重要的CO2排放源. 作为典型的资源能源密集型产业,钢铁行业加快绿色低碳转型、尽早实现碳达峰并有效降碳,既是行业自身高质量发展的内在需要,也是支撑落实国家碳达峰、碳中和目标的客观要求. 本文综合考虑经济社会发展、资源能源利用、工艺结构调整、低碳技术应用等因素影响,开展了基于情景分析的钢铁行业CO2排放达峰路径研究,对不同情景下钢铁行业CO2的排放趋势进行测算,识别钢铁行业CO2减排的主要驱动因素,判断推动钢铁行业碳排放达峰的关键举措,为制定“双碳”目标背景下钢铁行业CO2排放控制策略提供参考. 测算结果表明,我国钢铁行业CO2总排放量有望在2020—2024年期间达到峰值;行业CO2总排放量峰值为18.1×108~18.5×108 t,达峰后到2030年降幅将超过3×108 t. 研究显示,粗钢产量是决定我国钢铁行业碳排放能否快速达峰的关键,加大废钢资源利用、推进外购电力清洁化以及提高系统能效水平是2030年前钢铁行业实现碳排放达峰并有效降碳的重要途径. 到2030年,粗钢产量降低、加大废钢资源利用、推进外购电力清洁化、提高系统能效水平以及氢能炼钢和二氧化碳捕集、利用与封存(CCUS)等前沿技术对钢铁行业CO2减排的贡献率分别为11%~52%、34%~52%、7%~20%、5%~13%和2%~3%.   相似文献   

15.
中国工业过程大气铅排放特征   总被引:2,自引:1,他引:1  
依据典型行业活动水平数据和排放因子,采用"自下而上"排放因子法构建了2000—2010年我国有色金属冶炼、钢铁冶炼、建筑材料生产和铅酸电池生产等工业生产过程大气铅(Pb)排放清单.结果显示,我国工业过程大气Pb排放呈逐年递增趋势,年均增长率为12.5%,2010年排放量高达14920.47t;有色金属冶炼过程为大气Pb的主要来源,比重高达66.7%,其中,铅冶炼过程对整个工业过程的Pb排放贡献达到29.0%.钢铁烧结过程大气Pb排放仅次于有色金属冶炼过程,排放贡献率达23.1%,其排放主要来源于粗钢冶炼.另外,由于产业集中度低和控制技术相对落后,导致建材生产行业和铅酸电池生产过程排放对周边的环境影响也不容忽视.受矿产资源分布不均及产业布局等因素影响,我国工业过程大气Pb排放地区分布差异明显,主要集中在湖南、河南、云南、河北和江西等省份.  相似文献   

16.
The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%–49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%–36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven,sintering machine and blast furnace were 0.039–0.047 g Hg/ton steel, and for the electric furnace it was 0.021 g Hg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%–73% of total mercury emissions to air.  相似文献   

17.
钢铁行业是我国重要的基础行业,也是典型的高污染行业,每年排放大量的二氧化硫(SO2)和氮氧化物(NOx)等大气污染物。随着钢铁行业超低排放标准的实施,对大气污染有主要贡献的烧结工序亟须改造现有的或新建先进的脱硫脱硝设施。在介绍烧结烟气特点和排放标准变化的基础上,综述了目前主流应用的单独脱硫技术、单独脱硝技术和同时脱硫脱硝技术的应用现状,以及实验研发阶段的同时脱硫脱硝技术的研发进展,并系统展望了各类技术的未来发展前景。指出在单独脱硫和脱硝技术中,半干法和低温选择性催化还原法(SCR)更具应用潜力,且半干法脱硫+袋式除尘+SCR的工艺组合环境效益最高;同时脱硫脱硝技术中,氧化法和活性焦法尚需进一步提高效率和降低成本,同时脱硫脱硝技术具有潜在发展前景。  相似文献   

18.
以南京市三家钢铁企业烧结机为例,对排放废气中的二噁英进行监测,分析各组分的含量,进一步研究排放废气中二噁英的种类组成及含量分布特征,依据现行的标准二噁英排放浓度达标,但是南京的排放水平远高于国外排放水平。分析成因,结果表明烧结过程中的二噁英主要是在料层中生成的,主要以多氯二苯并呋喃存在,为减少烧结过程二噁英的生成,可以从改变工艺、控制原材料和增加处理设施等方面进行控制,尽可能减少气态氯化氢的形成,防止再合成物和其它前驱化合物的产生。  相似文献   

19.
唐山市钢铁行业碳排放核算及达峰预测   总被引:2,自引:2,他引:0       下载免费PDF全文
杨楠  李艳霞  吕晨  赵盟  刘中良  刘浩 《环境工程》2020,38(11):44-52
唐山市作为工业密集型城市,2018年生铁、粗钢和钢材产量约占全国总产量的15%,同时也排放了大量的温室气体和大气污染物。以唐山市为例,研究唐山市钢铁生产碳排放2010—2030年的变化趋势,并确定达峰时间。基于《温室气体排放核算与报告要求》的计算方法,初步建立了可根据设备规模、运行时长、产能利用率和单位产品能耗参数来核算企业CO2排放的数值算式,并将其应用于唐山市全部钢铁联合企业,计算得出2017年唐山市钢铁行业碳排放量为14042.52万t,碳排放系数为1.616 t CO2/t钢。与文献、统计年鉴数据对比误差均<10%,表明数值算式有一定的准确性,可为自下而上地快速核算企业或区域的钢铁生产碳排放提供参考。同时,结合唐山市钢铁历史生产情况、生产现状及未来规划,借助LEAP构建了能源需求模型,得到2010—2030年唐山市钢铁生产化石能源消耗和碳排放量的变化趋势,并确定唐山市钢铁生产碳排放已于2018年达峰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号