首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
在厌氧/缺氧/好氧(A/A/O)脱氮除磷系统中分别投加氯苯那敏和雷尼替丁,研究了这两种含有二甲胺基团的药物对A/A/O系统中N-亚硝基二甲胺(NDMA)及其总前体物去除效果的影响.结果表明, A/A/O系统对氯苯那敏和雷尼替丁的去除率较低,分别为32%和58%,且主要通过厌氧过程去除.外加氯苯那敏会导致系统对总氮的去除率从58%降至24%,同时引起出水氨氮浓度上升.雷尼替丁的投加会明显抑制系统对NDMA的去除,其去除率从90%降至66%.A/A/O反应器中NDMA的去除并不完全受生物脱氮过程的影响.由于具有较高的NDMA生成潜能,外加氯苯那敏,雷尼替丁会引起进水中NDMA总前体物浓度大幅增加,且导致A/A/O系统对NDMA总前体物的去除率明显下降 (从70%降到31%~33%).  相似文献   

2.
厌氧酸化-缺氧-好氧生物膜法处理焦化废水的研究   总被引:14,自引:1,他引:14  
用厌氧酸化-缺氧-好氧(A1-A2-O)生物膜法对上海焦化厂废水进行处理.试验结果表明,当进水COD为600~1000mg/L,@氨氮为200~280mg/L时,为同时达到较好的有机物去除和脱氮效果,系统的HRT至少应为34.5h;混合液回流比为4.0~5.0;好氧段pH值应维持在7.8~8.0,出水剩余碱度100~200mg/L;在缺氧段中需加入甲醇作为外加碳源,甲醇与硝酸氮的比为2.581为宜.在上述工艺条件下,系统中无亚硝酸氮的积累.  相似文献   

3.
陈秀荣  艾奇峰  徐文璐  吴敏霖 《环境科学》2011,32(10):2986-2992
针对我国大多数城市污水低碳氮比的水质特点,提出以好氧-低氧淹没式生物滤池对其进行深度脱氮处理.试验过程中,保持好氧段DO为3.5~4.3 mg/L、低氧段DO为0.9~1.1 mg/L,通过调节2段进水分流比、水力停留时间(HRT)、进水碳氮比(C/N)实现深度脱氮效果.进行了3个阶段的试验研究:首先,以低C/N城市污...  相似文献   

4.
缺氧-好氧生物脱氮工艺曝气量在线控制策略分析   总被引:4,自引:1,他引:4  
马勇  彭永臻  王淑莹 《环境科学》2008,29(9):2501-2506
曝气控制是生物脱氮工艺重要的控制变最,它决定着整个处理系统的处理效果和运行费用.应用Benchmark-BSM1平台模型对缺氧-好氧生物脱氮工艺几种典型的曝气控制策略进行了研究,结果表明,前馈-反馈曝气量控制最优,其次为反馈控制、恒DO控制和恒曝气量控制.前馈-反馈控制和恒DO控制相比较,出水氨氮浓度大约降低24%,最大出水氨氮浓度降低18%,曝气能耗降低9%,获得了曝气量最优控制方法以及在不同运行条件下应采用的曝气控制策略,为了实现缺氧-好氧生物脱氮工艺硝化反应的最优控制,应同时控制曝气量和好氧区体积.  相似文献   

5.
缺氧/好氧SBR工艺去除亚铵法造纸废水中的氮   总被引:7,自引:2,他引:7  
孙剑辉  魏瑞霞 《环境科学》2001,22(4):117-119
采用反应期缺氧/好氧SBR工艺去除亚铵法造纸废水中氮的研究结果表明:该工艺脱氮的最佳操作条件为:缺氧、好氧时间比1:1.5,运行周期为8h;SRT≥12d,NH3-N负荷率<0.063g/(g·d);当进水中CODcr浓度为1200~1800mg/L,NH3-N浓度为135~200mg/L,NOx-N浓度为7~10mg/L时,没有外加碳源时,氨氮的去除率为95%,总氮的去除率为66%,投加乙酸钠后,总氮的去除率提高到85%;投加乙酸钠的量为125mg/L(以CODCr计)最经济、有效.  相似文献   

6.
以乙酸钠和丙酸钠1:2混合作为碳源,进水COD浓度分别为200,400,600,800mg/L,研究混合碳源浓度对单级好氧生物脱氮除磷的影响,并通过比较微生物体内储能物质的变化,探讨混合碳源浓度对生物脱氮除磷性能影响的机理.结果表明,当进水磷和氨氮浓度分别为12,30mg/L时,随着进水COD由200增加至800mg/L,磷去除率由39.9%提升至86.4%(氮去除率从13.5%提升至96.4%).进水COD为400mg/L时单位挥发性悬浮固体(VSS)的磷和氮去除量达到最高[分别为(4.31±0.08)和(6.15±0.22)mg/g].当进水COD由200增加至400mg/L时生物除磷活性增强,而COD继续增加会使污泥沉降性能变差,脱氮除磷生物活性降低.好氧吸磷和同步硝化反硝化主要由微生物体内储能物质多β羟基烷酸盐(PHA)驱动,当进水COD为400mg/L时单位VSS消耗的PHA最多.混合碳源浓度通过影响碳源的好氧代谢,使微生物体内储能物质的积累/转化量不同,进而影响系统的脱氮除磷性能.  相似文献   

7.
在以可溶性淀粉为唯一碳源、进水含有硝态氮的缺氧-好氧SBR脱氮除磷系统中,研究了投配亚硝态氮对该乳酸发酵系统除磷的影响.试验结果显示,初始投加亚硝酸盐的浓度分别为2、5、10 mg·L~(-1)时对系统的缺氧吸磷及好氧吸磷都产生了抑制作用,缺氧阶段的释磷量和释磷速率随进水亚硝酸盐浓度的增大而升高.亚硝酸盐对缺氧期液相中乳酸和污泥中糖原的积累都有明显的影响,当亚硝酸盐浓度由0 mg·L~(-1)升至10 mg·L~(-1)时,乳酸浓度由14.06 mg·L~(-1)下降至1.56 mg·L~(-1),相反污泥中糖原的含量从235.69 mg·g~(-1)上升至272.97 mg·g~(-1)(以VSS计,下同),并且在好氧阶段糖原的消耗量增加,污泥的吸磷量也随之增加.研究表明,亚硝酸盐对淀粉直接发酵成乳酸的过程及糖原转化为乳酸的过程均有抑制作用.  相似文献   

8.
好氧段碳源浓度对同步去除和富集磷酸盐生物膜的影响   总被引:1,自引:1,他引:1  
徐林建  潘杨  章豪  冯鑫  魏攀龙  尤星怡 《环境科学》2019,40(7):3179-3185
利用聚磷菌以循环交替O/A模式运行,对生活污水处理厂的主流工艺中实现磷酸盐的同步去除和富集,探究了好氧段碳源浓度对聚磷生物膜去除和富集磷酸盐性能以及生物膜中微生物种群结构的影响.结果表明,好氧COD质量浓度从200 mg·L~(-1)降低到0 mg·L~(-1),吸磷速率提升1. 29倍,出水磷质量浓度稳定在0. 5 mg·L~(-1)以下;释磷速率提升3. 56倍,富集液磷酸盐质量浓度从27. 125 mg·L~(-1)升高到55. 91 mg·L~(-1).微生物群落变化中,鉴定为聚磷菌的变形菌门(Proteobacteria)的含量增加约2倍,红环菌科(Rhodocyclaceae)和厌氧绳菌科(Anaerolineaceae)的富集效果分别提高了2. 28和5倍.降低好氧段碳源浓度,有利于聚磷菌的筛选和富集,强化了好氧段磷酸盐的去除以及厌氧段磷酸盐的释放,获得了更高的磷酸盐富集液,并且为以资源回收为目的的未来城市污水处理厂提供降低好氧段碳源需求的理论基础.  相似文献   

9.
碳源和氮源对异养硝化好氧反硝化菌株Y1脱氮性能的影响   总被引:7,自引:1,他引:7  
从焦化废水活性污泥中筛选到一株高效脱氮细菌,命名为Acinetobacter sp.Y1.本实验对菌株Y1在不同碳源、氮源、碳氮比及底物浓度下的脱氮特性进行了研究,结果表明,菌株Y1可以利用氨氮、亚硝氮和硝氮生长,不能利用羟胺;以氨氮为唯一氮源进行硝化作用时,柠檬酸钠和乙酸钠是最佳碳源,最佳碳氮比为15,菌株Y1可降解高浓度氨氮,在36h内将400 mg·L-1氨氮全部去除,1600 mg·L-1氨氮的去除率可达21.3%,最大降解速率随着初始氨氮浓度的升高而增大.以硝氮或亚硝氮为唯一氮源进行反硝化时,菌株Y1可以适应高浓度氮源但不能完全去除氮源,当碳氮比为20,经36h培养硝氮和亚硝氮的去除率均达到100%.  相似文献   

10.
有机碳源及DO对好氧反硝化细菌AD6脱氮性能的影响   总被引:2,自引:4,他引:2  
杨新萍  钟磊  周立祥 《环境科学》2010,31(6):1633-1639
采用摇瓶实验,研究了C/N值、培养液DO及柠檬酸盐、乙酸盐、葡萄糖3种有机碳源对好氧反硝化细菌Pseudomonas mendocina AD6脱氮性能的影响.C/N值不仅直接影响好氧反硝化过程中碳源数量,也显著影响培养液DO变化.C/N值为3时,因碳源数量不够而导致AD6好氧反硝化脱氮效率仅有42%;当C/N值为23、 15、 8时,培养液DO先快速下降至缺氧状态然后再升至好氧状态,反应末期TN损失率分别为69%、 70%、 55%,其中好氧条件下反硝化作用引起的TN损失约为7%、 20%、 25%.培养液起始DO在7.15~8.08 mg/L, C/N值为15及以下,摇瓶(250 mL三角瓶)装液量为25~100 mL,摇床转速为180 r/min,培养液DO先下降至缺氧状态,但可在反硝化反应进行24 h后恢复至好氧状态,减少摇瓶装液量的充氧措施提高培养液DO效果有限.柠檬酸盐与乙酸盐是AD6能够高效利用的碳源,利用率可达90%、 92%,而葡萄糖的利用率仅有41%.乙酸盐促进了 AD6的好氧反硝化功能,TN去除率、好氧反硝化脱氮效率分别比以柠檬酸盐为碳源时高14%、 5%.采用摇瓶试验评估好氧反硝化细菌的好氧反硝化效率应谨慎,因为取决于溶液的C/N值和碳源种类,可能相当部分N的损失是在缺氧条件下产生.  相似文献   

11.
碳源的选择及曝气量的控制是影响多级土壤渗滤系统(multi-soil-laying,即MSL)脱氮效果的重要因素.试验采用BAF+MSL两段式新型组合工艺,避免了传统MSL曝气过量抑制反硝化脱氮的风险.考察了不同水力负荷下,BAF+MSL对生活污水的净化效果,并比较研究了以聚丁二酸丁二醇酯(PBS)为反硝化碳源的MSL-1及木屑为碳源的MSL-2的脱氮除磷效果.结果表明,不同水力负荷下,系统对SS平均去除率为94.08%,对COD的去除率均在80%以上,出水COD在20mg·L-1以下.水力负荷对系统BAF段硝化性能影响较小,对MSL反硝化脱氮影响较大.BAF水力负荷为0.5、1及2m·3m-·2d-1时,BAF对NH4+-N的去除率均在90%以上,对TN的平均去除率依次为26.53%、11.09%、5.71%;对应MSL段水力负荷分别为0.25、0.50及1m·3m-·2d-1时,MSL-1对TN平均去除率分别为87.39%、65.09%、45.56%,MSL-2平均去除率依次为61.51%、42.52%、31.32%.MSL-1脱氮性能明显优于MSL-2,而两者除磷效果区别较小.随着水力负荷增大,MSL对TP去除率依次降低,MSL-1对TP平均去除率最高为91.97%.  相似文献   

12.
采用"微曝气+缺氧"的两段式多级土壤渗滤系统(multi-soil-layering system,MSL)工艺,建立了在缺氧段模块中添加不同碳源的MSL系统并进行脱氮效率对比.其中,MSL1系统添加了传统碳源木屑,MSL2系统添加了一种基于PHBV(聚羟基丁酸戊酸酯)的共混固相碳源(GC-4).通过10个月的连续运行,深入探讨碳源、水温、表面水力负荷等条件对该工艺脱氮性能的影响.整个运行过程期间不同条件影响下,添加新型固相碳源的MSL2比MSL1表现出更好的强化脱氮性能.在相同表面水力负荷(1.0 m3·m-2·d-1)条件下,水温的降低会直接降低系统的脱氮效率.当水温从平均19℃下降到15℃时,MSL1系统对NH+4-N、TN的平均去除率分别由91%、62%下降为81%、45%,MSL2系统对NH+4-N、TN的平均去除率分别由88%、72%下降为80%、55%,但MSL2系统仍然优于MSL1系统.水力负荷的降低会提高2个系统TN去除率大约20%,证明了低水力负荷利于系统的脱氮效果.在各个运行阶段,MSL系统添加固相碳源均没有出现碳源过度释放现象,表现出较好的COD去除效果.分子生物学研究揭示了两段式MSL系统中微生物、硝化菌、反硝化菌的功能分区及其丰度,在生物量和反硝化基因数量上MSL2均大于MSL1,硝化菌(amo A基因)集中分布在微曝气段,反硝化菌(nir S、nir K)集中分布在土壤模块层,比较好的解释了不同碳源类型条件下MSL系统的脱氮效果的差异性.  相似文献   

13.
溶解氧对分段进水生物脱氮工艺的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
采用分段进水生物脱氮工艺处理生活污水.设置0.9,0.6,0.4,0.3m3/h4组曝气量,相应的好氧区溶解氧(DO)浓度约为2.8,1.7,0.8,0.5mg/L左右.结果表明,在好氧区DO为0.5mg/L左右的低氧条件下,通过对系统进行适当的控制,可以取得较好的硝化效果,氨氮去除率可达98%以上.同时,由于低曝气量下混合液从好氧区到缺氧区携带的DO量减少,并且在好氧区发生了同步硝化反硝化作用,使得TN去除效果明显优于高曝气量的情况.另外,由于工艺结构的特点,分段进水生物脱氮系统可长期在低氧条件下运行,且污泥沉降性能良好.  相似文献   

14.
构建了多级土壤渗漏系统(MSL)以处理农村生活污水,主要研究了MSL的挂膜启动特征,进水水力负荷对MSL处理生活污水性能的影响,以及MSL运行过程中生物膜的特征.实验结果表明,采用连续进水的方式挂膜28d后,挂膜成功,MSL对生活污水中COD,氨氮,TN,TP的去除率分别达到84.5%,74.7%,66.7%,76.4%.MSL运行过程中,表现出对进水水力负荷变化较强的适应性,水力负荷为400L/(m2·d)时,生活污水中COD,氨氮,TN,TP的平均去除率分别达到93.4%,94.9%,80.4%,94.7%,系统出水水质能够满足城镇污水处理厂污染物排放标准(GB18918-2002)一级A标准.MSL对有机物和氮磷的去除途径结果表明,微生物降解和转化作用对污水中COD,氨氮,TN的去除贡献率最大,Fe3+与PO43-的化学沉淀作用则是TP去除的主要途径.实时荧光定量PCR技术检测结果显示,生物膜中硝化功能菌占总菌群的35.5%.  相似文献   

15.
以PHAs为固体碳源的城镇二级出水深度脱氮研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大, pH值为7.5时,在15~35℃范围内, 30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L.  相似文献   

16.

随着污水治理要求的愈加严格与公众健康意识的不断提升,水体硝酸盐污染已引起世界各国的普遍关注。目前,生物异养反硝化是去除水中硝酸盐的主要技术手段,其关键制约因素是碳源,而传统外加碳源的弊端也在不断暴露,于是开发适用于生物脱氮工艺的新型缓释碳源成为国内外学者广泛关注的焦点。从促进生物反硝化脱氮的缓释碳源开发必要性出发,详细分析了缓释碳源的种类、促进反硝化的效果、改性方法、影响因素、作用机理及生物膜特性,比较和揭示了天然缓释碳源、改性缓释碳源、人工合成缓释碳源促进反硝化的性能及生物膜群落结构。提出该领域后续研究方向,包括突破反应动力学的限速步骤、优化骨架材料和空间架构、开发新型缓释碳源促进生物脱氮工艺等,以期为缓释碳源促进生物反硝化效率及推广应用提供参考和依据。

  相似文献   

17.
高盐高氮榨菜废水生物脱氮试验研究   总被引:12,自引:0,他引:12  
针对榨菜生产过程中产生的高盐高氮废水,探讨了在高盐条件下有机负荷、氮负荷、DO、pH等因素对SBBR反应器脱氮效能的影响.研究结果表明,在SBBR反应器中接种从榨菜腌制废水中筛选出的耐盐菌后,可使反应器对高盐废水具有良好的适应性,同时镜检发现其生物膜中存在大量丝状菌;反应器具有较强的同时硝化反硝化能力,有机负荷、氮负荷、DO、pH等因素对反应器脱氮效能的影响显著;研究得出其最优运行参数为有机负荷小于1·0kg·m~(-3)·d~(-1)、氮负荷小于0·15kg·m~(-3)·d~(-1)、DO大于5mg·L~(-1)、进水pH大于7及温度大于20℃,在此条件下可使进水盐度(以NaCl计)为2%、CODCr为3500mg·L~(-1),TN为530mg·L~(-1),NH_4~+-N为150mg·L~(-1)的榨菜废水,其出水CODCr小于80mg·L~(-1)、NH_4~+-N小于3mg·L~(-1)、TN小于16mg·L~(-1),NH_4~+-N和TN的去除率分别为98%和96%。  相似文献   

18.
含氮废水生物处理技术研究现状及发展趋势   总被引:4,自引:0,他引:4  
近年来,污水脱氮处理技术不断发展,涌现了很多新方法和手段。生物脱氮技术能耗低、易于操作、无二次污染且成本低,是一项极具发展前景的技术。本文介绍了近几年国内外该方向的研究成果,内容包括水中氮污染特征、传统生物脱氮技术与新兴生物脱氮技术,文章阐述了目前生物脱氮技术存在问题,展望了生物脱氮技术的发展趋势。  相似文献   

19.
不同碳源和碳氮比对一株好氧反硝化细菌脱氮性能的影响   总被引:18,自引:2,他引:18  
利用间歇培养装置研究了好氧条件下丁二酸盐、乙酸盐和苹果酸盐3种不同碳源对好氧反硝化细菌X31脱氮性能的影响,并就不同碳氮比(C/N)条件下菌株X31的反硝化能力展开了研究.结果显示,不同碳源种类对菌株硝酸还原酶活性有明显影响.以丁二酸盐和乙酸盐作为碳源时,其脱氮效果均要明显好于苹果酸盐作为碳源.以乙酸盐作为碳源时菌株的反硝化速率要稍高于丁二酸盐作为碳源,其反硝化速率可以达到11.86 mg·g-1·h-1.不同碳氮比(C/N)条件下,X31菌株的好氧反硝化能力亦不相同.当C/N大于5时,脱氮率能达到90%以上.最适宜的碳氮比是5~6,在此区间能进行完全的反硝化.当C/N在1~14之间变化时,硝酸盐还原基本都发生在菌株生长的第4~10 h,整个反硝化过程中亚硝酸盐浓度一直保持在极低的水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号