首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
一株菲降解菌的鉴定及降解特性   总被引:2,自引:0,他引:2  
从沈阳北部污水处理厂曝气池活性污泥中驯化和分离得到一株以菲为碳源的降解菌株W12,根据菌株形态和16S r DNA基因测序分析,该菌株鉴定为耳炎假单胞菌(Pseudomonas otitidis.).该菌株降解菲的最佳环境条件为:温度为30℃,p H值为7.0,摇床转速为170 r·min-1,接种量为10%,盐度为0.5%;菲初始质量浓度为1000 mg·L-1培养96 h后,降解率为65.80%,且对菲的最大耐受浓度为2000 mg·L-1;加入蛋白胨和酵母膏后,降解率分别提高到75.65%和70.85%.  相似文献   

2.
从某制药厂曝气池活性污泥中驯化和分离得到一株以盐酸黄连素为唯一碳源的降解菌株K3,通过菌体形态、生理生化反应特性和16S rRNA基因测序分析对其进行鉴定.结果表明,菌株K3为施氏假单胞菌(Pseudomonas stutzeri),该菌株利用盐酸黄连素生长的最佳条件为:接种量为10%,生长温度为30℃,pH值为7.0,摇床转速为150 r·min-1.盐酸黄连素初始质量浓度为 50 mg·L-1时,4 d的降解率为 42.7%.外加葡萄糖或乙酸钠时,4 d的降解率由42.7%分别提高到51.6%和47.9%.菌株K3对盐酸黄连素的最大耐受浓度为450 mg·L-1.  相似文献   

3.
李朝霞  丁成  严金龙 《环境工程》2011,29(6):124-127
将不同稀释倍数的造纸废水接种在细菌培养基上,培养2 d后采用划线法分离,然后采用琼脂块培养法,把每一个长满单菌落的琼脂块分别接种到选择培养基中,选取COD降解能力最大的作为目标菌株,最后从造纸废水初始浓度、温度、pH值、接种量、降解时间等方面讨论了该菌株对造纸综合废水的降解特性。结果表明:所筛得的目标降解菌ZH3菌体直径为(0.6~0.8)μm×(1.4~2.4)μm,杆状,有数根鞭毛,无芽孢,为革兰氏阴性菌,初步鉴定该菌属产碱假单胞菌,该菌降解造纸综合废水的适宜条件为废水初始COD浓度为500 mg/L,温度为30~35℃,pH为7.0,接种量为10%,降解时间为48 h。  相似文献   

4.

从连云港某废弃化工厂污染土壤中分离筛选高效石油烃降解菌株,研究菌株的生理生化特征并对其进行测序和种属鉴定,采用单因素试验对菌株降解柴油的环境因子进行分析。结果表明:从污染土壤中共分离出柴油降解菌株4株,经过测序及同源比对,与该4株菌株同源性最高的分别为阴沟肠杆菌(Enterobacter_cloacae,HY1),肺无色杆菌(Achromobacter_pulmonis,HY2),台湾假单胞菌(Pseudomonas_taiwanensis,HY3),铜绿假单胞菌(Pseudomonas_aeruginosa,HY4),同源性均达98%以上;4株菌株具备不同的产表面活性剂能力和柴油降解能力,其中菌株HY1和HY2对柴油的降解率最高,当柴油浓度为0.5%,处理时间为20 d时,二者对柴油的降解率均达37%以上;通过单因素试验对降解条件进行优化后,发现在柴油浓度为0.5%,降解时间为8 d时,菌株HY2和HY1最佳降解条件是初始pH为7,摇床转速为180 r/min,接种量为3%~4%,此时,二者对柴油的降解率分别为40.15%和43.87%。本研究可以丰富石油烃降解菌的菌种信息,为石油烃污染土壤修复提供菌种资源及数据支持。

  相似文献   

5.
一株海洋石油降解菌的特性研究   总被引:7,自引:3,他引:4  
从胜利油田石油污染水体中分离出的一株石油降解菌HB-1(Acinetobacter sp.),在人工海水条件下,对该菌株的降解条件进行了优化,通过色谱-质谱联用(GC-MS)分析了石油组分降解前后的变化规律,并对其降解机理进行了初探. 结果表明:①菌株HB-1降解石油烃所需优势氮源为NH4NO3,氮磷比〔ρ(氮)/ρ(磷)〕约为3.18,转速200 r/min,φ(石油)为1.0%时为最佳降解条件;②菌株HB-1在淡水和海水中均能生长,但在海水中对石油烃的降解效果显著;③GC-MS分析表明,菌株HB-1对长链烃有明显的降解作用;④表面活性剂Tween 80能强化菌株HB-1对石油的降解,推断菌株在培养过程中产生了某种生物表面活性剂促使烃类易于为细胞吸收所利用.   相似文献   

6.
从胜利油田采油厂石油污染土壤中分离筛选到一株石油高效降解菌SY-02,以石油烃为唯一碳源和能源。在总石油烃(TPH)浓度为1%(W/V)培养液中接种一定量的该菌,30℃、200r/min摇瓶振荡培养7d,TPH降解率可达71%。经形态、生理生化及16S rDNA同源性等指标分析,初步鉴定该菌种属Pseudomonas chlororaphis(绿针假单胞菌)。纯烃底物降解实验表明正十六烷最易被SY-02菌代谢,其次是单环芳烃苯,然后是二环芳烃萘和三环芳烃菲,环烷烃较难被利用。  相似文献   

7.
一株中度耐盐硝基苯降解菌的鉴定及降解特性   总被引:1,自引:0,他引:1  
在高盐度(1%NaCl)条件下,从某制药厂曝气池的活性污泥中驯化、分离得到1株以硝基苯为唯一碳源的高效降解菌株N18,并通过菌体形态、生理生化反应特性、全细胞脂肪酸组分分析及16SrRNA基因测序分析对其进行初步鉴定.结果表明,菌株N18为蜡样芽胞杆菌(Bacilluscereus).该菌株利用硝基苯生长的最佳条件为接种量10%、生长温度30℃、pH=7.外加葡萄糖或乙酸钠可使硝基苯降解率分别由72.70%提高到82.62%和79.25%(硝基苯初始浓度为200mg.L-1,72h).在盐度为1%~3%时,硝基苯的降解情况基本不变,甚至在盐度为10%时仍能降解硝基苯,说明菌株N18为中度耐盐细菌.当150mg.L-1的苯酚或75mg.L-1的苯胺与200mg.L-1的硝基苯共存时,菌株仍能有效降解硝基苯.菌株对硝基苯的最大耐受浓度为400mg.L-1.  相似文献   

8.
一株多菌灵降解菌包埋条件及降解特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用海藻酸钠(SA)和聚乙烯醇(PVA)对1株多菌灵降解菌进行包埋,并对最佳包埋条件及包埋后的降解效果进行研究.结果表明:SA包埋法的最佳条件为:菌液与2% SA按1:5体积比混合,在4% CaCl2溶液中室温交联24h.PVA包埋法的最佳条件为:菌液与10%PVA按1:5比例混合,在3%CaCl2溶液中室温交联24h.活化48h后,在30℃、 pH6的条件下,SA包埋的多菌灵降解菌对多菌灵的降解率可达80.4%.PVA包埋的降解菌的降解率为76.3%.  相似文献   

9.
从松原油田石油污染土壤中筛选出3种高效降解石油烃的菌株分别为微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)YH、类产碱假单胞菌(Pseudomonas pseudoalcaligenes)TM和红球菌(Rhodococcus sp.)K1,对其菌落、菌体形态进行观察,并将3种菌株以不同比例进行复配,研究了3种单菌株及其复配菌株对石油烃的降解效果以及其间的协同降解作用。结果表明:复配菌株与单菌株对石油烃的降解效果有所差异;3种菌株具有协同降解石油烃的作用;3种菌株的复配比例(YH∶TM∶K1)为1∶0.5∶1.5时,对石油烃的降解效果最好;初始浓度为2 000 mg/L的石油烃,加入3 mL复配菌株,在130 r/min、30℃下振荡培养6 d后,石油烃的降解率达94.3%;当石油烃的初始浓度为2 000 mg/L时,复配菌株对石油烃的降解动力学曲线与零级动力学方程的拟合效果良好,其降解动力学方程为y=-309.6x+2 045.0(R~2为0.931),降解半衰期为3.4 d。  相似文献   

10.
采用富集分离方法从陕北某炼油厂石油污染土壤中筛选石油降解菌.通过生理生化试验和16SrDNA基因序列分析鉴定菌株种属;选取pH值、盐度、氮源、接种量和石油浓度作为单因素,探究不同单因素对菌株生长的影响;通过拮抗试验,构建石油降解混合菌系并探究其对石油降解效果.结果表明:从石油污染土壤中筛选出4株能够在含油培养基上生长良好的菌株,其分别属于不动杆菌属Acinetobacter(T2、T4、T5)和芽孢杆菌属Bacillus(T3);在单因素试验中pH值、盐度、氮源、接种量和石油浓度都会影响菌株的生长;4株菌无拮抗作用,对其同比例组合共构建15组菌系,接种量体积比1:1:1:1组成的混合菌系P在相同时间内石油降解率最高(89%),说明混合菌系P对石油具有高效降解能力.本试验结果旨在为修复石油污染土壤提供理论参考.  相似文献   

11.
低温条件下硝基苯降解菌的筛选及鉴定   总被引:3,自引:3,他引:3  
在低温(15℃)条件下,从东北制药总厂曝气池和氯霉素生产废水集水池污泥中驯化、分离得到1株以硝基苯为唯一碳源的高效降解菌株cc-2,并通过菌体形态、生理生化反应特性及16S rDNA测序对其进行分析.同时,对菌株cc-2的生长和降解硝基苯的特性进行了研究.结果表明,菌株cc-2为鲍曼不动杆菌(Acinetobacter baumannii),该菌株利用硝基苯生长的最佳条件分别是:接种量为10%,生长温度为15℃,pH值为7.菌株cc-2可在硝基苯质量浓度低于400 mg.L-1的无机盐培养基中生长代谢,当硝基苯初始浓度为200 mg.L-1时,菌株48h的降解率可达66.84%.  相似文献   

12.
具菲降解特性植物内生细菌的分离筛选及其生物学特性   总被引:3,自引:1,他引:2  
从长期受石油污染的植物体内分离到内生细菌36株,通过平皿促生和定殖试验筛选出1株能高效降解菲并明显促进小麦生长、能在小麦体内良好定殖的内生细菌7J2菌株.同时,对菌株7J2的生物学特性进行了研究.结果表明,菌株7J2在菲含量为30 mg·L-1的条件下,28℃振荡培养6d,菲的降解率达到99.81%.菌株7J2能够产生吲哚乙酸(IAA)(3.4±0.2)mg·L-1)和铁载体(2,3-二羟基苯甲酸)(4.3±1.6) mg·L-1).振荡培养3d,接活菌的培养基中有效磷浓度比接灭活菌的处理增加了32.5%.另外,菌株7J2对重金属Pb2 、Cr2 、Cu2 、Ni2 、Zn2 、Cd2 均有较强的抗性.通过16SrDNA序列测定,菌株7J2属于肠杆菌属.  相似文献   

13.
壬基酚(NP)是典型的内分泌干扰物,具有雌激素效应.目前对NP的研究主要集中于微生物降解对其整体去除效果,而对各NP同分异构体的降解行为尚缺乏系统性研究.从钱塘江沉积物中筛选得到一株能够降解NP的细菌,命名为N-1,实验室条件下该菌能以NP为唯一碳源生长.经形态、生理生化及16S rRNA基因序列分析,N-1鉴定为假黄单胞菌(Pseudoxanthomonas sp.).通过正交试验确定N-1降解NP的最适条件为:温度30℃,p H=7.0,菌量10%,NP浓度5~10 mg·L~(-1).最适条件下,N-1对NP 16 d整体降解率可达88.0%,对10种NP异构体降解率在69.7%~100%之间,说明N-1对NP同分异构体的降解具有结构-降解特性,即不同结构NP异构体表现出不一样的降解能力.进一步研究发现,NP异构体降解率随着NP烷基C链长度增加而升高,随着烷基取代基结构越复杂而降低.NP降解选择性导致的难降解成分残留现象,为NP类异构体污染物的微生物修复提供了一定的理论依据.  相似文献   

14.
一株高效降解菲的植物内生细菌筛选及其生长特性   总被引:3,自引:0,他引:3       下载免费PDF全文
从长期受PAHs污染的植物看麦娘中分离出1株可高效降解菲的内生细菌Pn2,经生理生化特征分析和16S rDNA序列同源性分析,初步鉴定为Naxibacter sp.,研究了菌株Pn2的生长特性及其对菲的降解作用.结果表明,菌株Pn2能以菲为唯一碳源生长,并对菲有良好的降解性能.菲浓度为49.92mg/L时,30℃下150r/min振荡培养72h,菲降解率高达98.78%.接种量和污染强度显著影响Pn2对菲的降解:接种量越大,菲降解率越高;随污染强度升高,菲降解率先增大后减小,最适污染强度为150mg/L.菌株Pn2有较强的环境适应能力.温度为25~37℃、环境pH值为6.0~8.0、盐浓度1%~2%范围内,菌株Pn2生长状况良好.菌株Pn2为好氧生长,通气量越大,菌株生长越旺盛.菌株Pn2对低浓度的氨苄青霉素和氯霉素有抗性.  相似文献   

15.
从制药厂周边土壤分离获得一株哌嗪高效降解菌株PIPA-6,其能在以哌嗪为唯一能量来源的无机培养基中生长,30h对100mg/L的哌嗪降解率达100%.形态学观察、生理生化鉴定和16S rDNA基因序列同源性分析表明,菌株为嗜烟碱类节杆菌(Paenarthrobacter nicotinovorans).菌株PIPA-6具有广泛的温度(10~40℃)和pH(5~10)适应范围、优良的钠盐耐受性(50g/L)和极强的哌嗪抗性(300mg/L),其最佳降解条件为温度35℃,pH,8.体系中额外添加有机碳能提高菌株的降解效率.降解效应的模拟试验结果表明,菌株PIPA-6能在50L模拟罐中稳定发挥降解作用,制药废水中化学需氧量(COD)和铵态氮含量显著降低(P<0.05),哌嗪降解率在30d达98%.宏基因组测序证实该菌株能在水体中稳定定殖,改变了污水中的微生物群落结构.本研究中所获菌株充实了哌嗪降解菌种资源库,实验结果为菌株的实际开发应用提供了初步理论依据.  相似文献   

16.
北极海洋沉积物石油降解菌的筛选及系统发育分析   总被引:4,自引:1,他引:4  
从中国第二次北极科学考察采集的海洋沉积物中经富集培养、分离筛选得到了26株石油降解菌.研究表明,分离到的石油降解菌均可在以石油为唯一碳源和能源的无机营养盐培养基中生长,其中菌株P18、P28和P29生长最佳.当培养基中石油含量为2g·L-1时,于5℃下振荡培养14d,3株菌株的石油降解率可分别达到30.96%、34.85%和51.28%.分离到的石油降解菌绝大部分(25/26)能分泌胞外脂肪酶.表明其石油降解能力与产脂肪酶能力有着较强的相关性.分子鉴定与系统发育分析表明,分离到的石油降解菌除P31和P32属于细菌域(Bacteria)拟杆菌门(Bacteroidetes)的黄杆菌纲(Flavobacteria)外,其余均属于细菌域(Bacteria)变形杆菌门(Proteobacteria)的γ-变形杆菌纲(γ-Proteobacteria),其中包括交替单胞菌目(Aheromonadales)的假交替单胞菌属(Pseudoalteromonas)、科尔韦尔氏菌属(Colwellia)、希瓦氏菌属(Shetoanella),弧菌目(Vibrionales)的发光杆菌属(Photobacterium),假单胞菌目(Pscudomonadales)的假单胞菌属(Pseudomonas)和海螺菌目(Oceanospirillales)的盐单胞菌属(Halomonas).分离到的石油降解菌以假交替单胞菌属为优势菌群,其比例可达42%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号