首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
磺酰脲类除草剂的微生物降解研究进展   总被引:1,自引:0,他引:1  
王新  倪子钧  李兆兴  宋磊  鲍佳  张惠文 《环境化学》2020,39(5):1356-1367
磺酰脲类除草剂属于高效、低毒、高选择性的新型除草剂,被广泛应用于水稻、玉米、小麦、大豆等田间杂草的防控,其用量也呈逐年增加的趋势,但其微量的除草剂残留易对后茬敏感作物产生药害.利用微生物降解土壤中的除草剂残留有望成为一种修复污染的有效方法.本文综述了近几年国内外筛选出的能够降解磺酰脲类除草剂菌株的来源和所属微生物类群,以及除草剂降解酶的研究进展,此外,对相关微生物对不同除草剂的降解途径也进行了简要介绍,最后提出了目前有待解决的问题并对未来该领域的研究趋势进行了展望,可为后续寻找高效的微生物降解菌种及利用基因工程法修复受污染的土壤、水源提供参考.  相似文献   

2.
苯甲酮和苯并三唑类物质是应用广泛的紫外吸收剂,主要用于防止紫外辐射对人体皮肤和高分子材料的损害.随着温室效应和臭氧层破坏的加剧,紫外吸收剂的使用量日益增加,近年来,苯甲酮和苯并三唑类物质的内分泌干扰特性和对人体健康的潜在影响引起了广泛关注.本文系统地综述了苯甲酮及苯并三唑类紫外吸收剂的检测方法及环境残留的最新研究现状.目前,环境样品的预处理方法多采用固相萃取法,根据不同化合物极性大小,选择使用气相或液相色谱串联质谱进行检测.研究表明,苯甲酮和苯并三唑类物质在城市污水厂进出水和活性污泥中含量较高,地表水、地下水、土壤、底泥及生物体均能检测到此类物质的残留,土壤、底泥及生物样品中苯甲酮和苯并三唑类物质的浓度在ng·g~(-1)到μg·g~(-1)(干重)之间.同时,本文对苯甲酮及苯并三唑类物质在城市污水处理系统中的去除途径、多介质环境中的归趋、人体暴露及其风险评价等方面的研究趋势进行了展望.  相似文献   

3.
从农药厂活性污泥中分离筛选到一株可降解灭幼脲、除虫脲、氟铃脲的菌株,命名为M6.经生理生化特征和16S rRNA基因序列分析,将其鉴定为无色杆菌属(Achromobacter sp.).菌株M6可在48 h内降解91%以上初始浓度为100mg/L的灭幼脲、除虫脲、氟铃脲;且可在不添加其他碳源的情况下,以这3种杀虫剂为唯一碳源生长.选取菌株降解效果较好的灭幼脲为底物,研究其降解特性.菌株M6降解灭幼脲时,对温度、pH值等培养条件适应范围较宽,降解灭幼脲的最适温度为30℃,最适pH为7.0;可耐受400 mg/L的灭幼脲.通过对乙酰氨基酚变色和芳基酰胺酶基因克隆试验,初步确定菌株M6通过水解酰胺键降解灭幼脲、除虫脲、氟铃脲.本研究得到了苯甲酰脲类杀虫剂的高效降解菌,可为其污染修复的开展提供资源和理论基础.  相似文献   

4.
氯吡脲,可促进细胞增大和分化,能防止落花落果,常作为植物生长调节剂应用于葡萄的种植过程中.氯吡脲对人体、牲畜等具有一定的毒性,对眼睛和皮肤具有轻度刺激.噻唑隆也是一种常用于葡萄中的植物生长调节剂,可促进植物芽的分化,而残留于植物中的噻唑隆对人畜具有低毒作用,可对眼睛产生轻微的刺激.很多国家对于氯吡脲和噻唑隆在农业生产中的限量都制定了严格的残留限量标准,如我国国家标准GB 2763—2014中规定了氯吡脲和噻唑隆在葡萄中的最大残留限量都为0.05 mg·kg-1.国内外关于氯吡脲和噻唑隆残留的检测方法主要包括液相色谱和液相色谱-质谱联用等.  相似文献   

5.
本文建立了一种使用岛津超高效液相色谱仪和三重四极杆质谱仪联用测定农田土壤中12种磺酰脲类除草剂的方法.样品经处理后,用超高效液相色谱LC-30A与三重四极杆质谱仪LCMS-8040联用进行定量分析.使用外标法绘制12种磺酰脲类除草剂的校准曲线,线性范围宽,校准曲线的相关系数均在0.999以上.对0.5、5.0、50μg·L-1混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积的相对标准偏差分别在0.18%—1.42%和0.14%—3.55%之间,系统精密度良好.  相似文献   

6.
OasisTM HLB固相提取小柱在环境分析方面已获得了广泛的应用.小柱可以对不同类别的各种农药残留物质或环境污染物进行高效提取,包括酸性除草剂及代谢物(如:2 ,4-D,trifluralin等)、三嗪类除草剂及代谢物(如:atrazine等)、磺酰脲素类除草剂( 如:thifensulfuron methyl)、苯氧酸类农药、取代酚类农药(如:trichlorophenol)、乙酰胺类除草剂及代谢物(如:alachlor,metolachlor等)、有机磷类杀虫剂(如:acephate)及多环芳烃(如:phenathrene)等环境污染物.  相似文献   

7.
虱螨脲在棉花和土壤中的残留动态   总被引:3,自引:1,他引:2  
在长沙和郑州2地进行田间试验,采用液相色谱技术研究虱螨脲在棉籽、棉叶及土壤中的残留动态.结果表明:虱螨脲在棉叶、棉籽和土壤中的添加回收率分别为86.0%~94.7%、88.5%~92.1%和83.9%~97.7%;最低检出浓度分别为0.025、0.025和0.006 mg·kg-1.虱螨脲在棉叶和土壤中的半衰期分别是3.06~3.45和2.51~2.88 d.在推荐使用剂量和高剂量条件下,收获的棉籽中虱螨脲最终残留量均未检出,拟推荐我国棉籽中虱螨脲的MRL(最高残留限量)值为0.05 mg·kg-1.  相似文献   

8.
毛江胜  刘宾  郭栋梁  王剑 《生态环境》2011,20(2):364-367
利用高效液相色谱分析方法,考查氟铃脲在棉叶及土壤上使用后的降解和残留行为,为安全施药提供依据。采用田间试验法研究氟铃脲在棉叶和土壤中的残留消解动态。氟铃脲在棉叶中的消解动态均满足一级降解动力学过程及其降解常数。按照试验要求,氟铃脲在棉籽中的最终残留均未检出,低于日本规定的最大残留限量值(0.05 mg·kg-1)。该分析方法操作简单,精密度、准确度和灵敏度都符合农药残留标准要求,适用于棉花和土壤中的氟铃脲残留测定;建议2%氟铃脲乳油在棉花上防治病害,用药次数1次,使用剂量是22.5~30.0 g·a·i·hm-2,在棉花上的安全间隔期可定为10 d。  相似文献   

9.
乙酰羟酸合酶(AHAS)是磺酰脲类、咪唑啉酮类、三唑嘧啶类、磺酰胺类和嘧啶水杨酸类等乙酰羟酸合酶抑制剂类除草剂的作用靶标,获得能抗此类除草剂的AHAS突变基因资源具有非常重要的理论和应用价值.本文从长期使用磺酰脲类除草剂的农田土壤中分离到2株抗性细菌HR9和HR11,根据其表型特征、生理生化特性和16SrDNA序列系统发育分析,初步鉴定为克雷伯氏菌(Klebsiella sp.).菌株HR9和HR11对甲磺隆的最高耐受浓度分别达到9 600 μmol/L和8 200 μmol/L,且对各种乙酰羟酸合酶抑制剂类除草剂具有交叉抗性.利用PCR技术从HR9、HR11和实验室保存的一株除草剂敏感型克雷伯氏菌LB-2的总DNA中克隆到编码AHAS的基因ilvIH,其中ilvI编码大亚基即催化亚基,ilvH编码小亚基即调节业基.比对结果表明,菌株HR11与菌株HR9的ilvI有6个位点的氨基酸存在差异,HR9、HR11与LB-2的ilvI各有20和16个位点的氨基酸存在差异.  相似文献   

10.
采用共振拉曼光谱技术和量子化学计算研究了苯甲酰苯胺在甲醇和乙腈溶液中的短时光化学动力学行为.结果表明,苯甲酰苯胺的非平面反式结构为最稳定结构;在Frank-Condon区域内,苯甲酰苯胺主要由9个活性振动模组成;其中v24(苯环上C=C不对称伸缩振动和CCH的面内弯曲振动,NH面内弯曲振动)振动模在甲醇溶剂中的强度远远大于其在乙腈的强度;与脂肪酰胺类化合物和苯甲酰胺的研究结果比较发现,苯基取代-NH2上的H原子使得C=C不再具有明显的溶剂效应.  相似文献   

11.
本文介绍了大体积进样技术分析一组苯基脲类和三嗪类除草剂多残留的简便方法.  相似文献   

12.
恶唑酰草胺在稻田中的残留及消解动态   总被引:3,自引:0,他引:3  
借助加速溶剂提取、凝胶渗透色谱净化和液相色谱测定方法,研究了南京和南昌两地稻田施用w为10%的恶唑酰草胺乳油后,其有效成分恶唑酰草胺在稻田中的残留及消解动态。结果表明,恶唑酰草胺在水稻植株、稻田土壤及稻田水中的消解较快,在南京和南昌两地水稻植株中的消解半衰期分别为3.5和2.2 d,在稻田土壤中的消解半衰期分别为11.7和20.2 d,在稻田水中的消解半衰期分别为1.3和2.3 d。在稻田中按照最高推荐剂量和最高推荐剂量的2倍施用恶唑酰草胺乳油,施药1次,在收获的稻秆、稻壳、糙米及稻田土壤中均未检出恶唑酰草胺。这说明恶唑酰草胺为低残留、易降解农药。  相似文献   

13.
建立了环境样品中恶唑酰草胺及其代谢物的快速分析方法.以二氯甲烷作为提取溶剂,对试样采用加速溶剂萃取,自动凝胶渗透色谱仪净化预处理,液相色谱分离,PDA检测器测定,外标法定量.恶唑酰草胺及其代谢物的最低检测浓度,土壤和水稻植株为0.001-0.005 mg.kg-1,田水为0.001-0.002mg·l-1.其在田水、土壤、水稻植株中的平均回收率在80.0%-97.4%之间;相对标准偏差(变异系数)为2.0%-10.7%,线性相关系数均大于0.997.该方法的最低检测限和加标回收率均符合农药残留分析要求.  相似文献   

14.
本文介绍了大体积进样技术分析一组苯基脲类和三嗪类除草剂多残留的简便方法.苯基脲类除草剂广泛地应用于农作物田间杂草的防治,如异丙隆.三嗪类除草剂也是广泛使用的除草剂,莠去津就是一例.这两类除草剂都曾在饮用水中检出.  相似文献   

15.
氯吡脲在土壤和西瓜中的残留分析   总被引:11,自引:0,他引:11  
建立了氯吡脲在土壤和西瓜中残留的HPLC分析方法.氯吡脲的添加回收率大于95%,变异系数小于10%,最小检出浓度为5 μg·kg-1,检测限为0.4ng.对西瓜消解动态的研究表明,氯吡脲在西瓜中消解较快,半衰期为1.20-1.67d;使用剂量为20-30mg a.i. ·kg-1水溶液于雌花开放当天或前后一天均匀喷洒瓜胎(或浸瓜胎)一次,西瓜收获时(施药后40d),样品中未检出氯吡脲残留.土壤消解动态研究表明:使用600 mg a.i.·hm-2的剂量对土壤喷雾,氯吡脲在土壤样品中的半衰期为9.87-15.3d;使用300-600mg a.i.·hm-2的剂量对土壤喷雾,西瓜收获时(施药后40d),土壤中均未检出氯吡脲残留.  相似文献   

16.
农药在环境中的水解机理及其影响因子研究进展   总被引:8,自引:0,他引:8  
欧晓明 《生态环境》2006,15(6):1352-1359
农药的水降解与其在环境中的持久性是密切相关的,它是影响农药在环境中的归宿机制的重要依据之一,也是评价农药在水体中残留特性的重要指标。近些年来,国内外不少学者对农药尤其是有机磷、氨基甲酸酯、拟除虫菊酯和磺酰脲类等的水解进行了大量研究,其内容涉及到农药水化学降解机理及其各种因子如pH值、温度和黏土矿物等对农药水解的影响等,并取得了很多新的进展。但是所有这些研究主要集中于实验室内,而对其自然环境中各因子的贡献及其水解机制的了解则相对较少。今后应加强农药在自然条件下的水解动力学与机理以及黏土矿物和腐殖酸对农药在水体中的催化水解研究,以更好地评价农药在环境中的行为与归宿,为农药的合理使用提高科学依据。  相似文献   

17.
梁刚  张全刚  赵杰  靳欣欣  潘立刚 《环境化学》2020,39(7):1913-1922
环境中农药残留具有较强的毒性,其长期残存会对环境生态系统和人类个体产生毒性效应,因而引起科研工作者的关注.目前,传统的色谱分析方法(如气相色谱法、液相色谱-质谱联用法等)是农药残留检测的主要手段,但是存在费时、样本处理复杂、仪器设备昂贵等局限性,因此,迫切需求建立简单、快速、灵敏的农残检测方法.生物传感技术具有诸多优势,特别是其可以简化样本处理/制备过程,实现场地检测,降低检测成本,有望将来取代传统的分析方法.本文主要综述了丝网印刷电极电化学传感器在农残检测中的研究进展.首先,简单介绍了丝网印刷电极及其制备,然后重点介绍了丝网印刷电极电化学传感器在有机磷类、氨基甲酸酯类、除草剂类等三类农药中的应用进展,并分别阐述了以酶、核酸、蛋白、抗体等为分子识别元件的生物传感检测原理,最后对丝网印刷电极的发展进行了展望.  相似文献   

18.
乙酰羟酸合酶(AHAS)是磺酰脲类、咪唑啉酮类、三唑嘧啶类、磺酰胺类和嘧啶水杨酸类等乙酰羟酸合酶抑制剂类除草剂的作用靶标,获得能抗此类除草剂的AHAS突变基因资源具有非常重要的理论和应用价值.从长期使用甲磺隆的农田土壤中分离到1株对乙酰羟酸合酶抑制剂类除草剂有广谱抗性的菌株L19,根据表型特征、生理生化特性和16S rDNA序列系统发育分析,将其鉴定为假单孢菌属(Pseudomonas sp.).利用PCR技术从Pseudomonas sp.L19的总DNA中克隆AHAS基因,氨基酸序列比对结果表明,L19与对除草剂敏感菌株P.putida KT2440的AHAS调节亚基氨基酸序列完全相同,而催化亚基有4个氨基酸位点不同:[Val 29→Ala(L19→KT2440),Pro93→Ser,Val 345→Ala,Pro 484→Arg].分别将菌株L19与KT2440的AHAS催化亚基克隆到pET29a(+)的多克隆位点,构建了表达载体pET-L19AHASc和pET-KT2440AHASc,通过镍柱亲和层析纯化得到带有组氨酸标签的乙酰羟酸合酶.抗性试验结果表明菌株L19的乙酰羟酸合酶对四大类乙酰羟酸合酶抑制剂类除草剂的抗性均要强于KT2440的乙酰羟酸合酶,对甲磺隆、咪唑乙烟酸、唑嘧磺草胺和嘧草醚的抗性倍数分别达到53.6、9.3、8.2和9.5倍.菌株L19的乙酰羟酸合酶比活力、对ThDP和Mg2+的Kc值相应地比KT2440乙酰羟酸合酶的要低;而对底物丙酮酸钠的米氏常数Km值要比KT2440乙酰羟酸合酶的要高近1倍.  相似文献   

19.
本文介绍了液相色谱/大气压化学电离-质谱联用技术作为确认方法,检测饮用水和地下水中苯脲及三嗪草类除草剂的残留。共分析了16种除草剂,同时对分析方法进行了验证,其中标准偏差、离散度等结果均能满足饮用水的标准方法指南。  相似文献   

20.
为进一步研究虫酰肼在苹果树冠层的递释规律,分别采用QuEChERS法和Florisil固相萃取法建立虫酰肼在苹果叶片上的液相分析检测方法.结果显示,QuEChERS法虫酰肼的均添加回收率为80.34%—99.20%,变异系数为5.3%—17.9%,最小检出量均为0.1 ng,最低检出质量浓度均为0.01 mg·L~(-1);Florisil固相萃取法虫酰肼的均添加回收率为78.45%—88.24%,变异系数为7.8%—10.9%,最小检出量均为0.1 ng,最低检出质量浓度均为0.02 mg·L~(-1).两种方法均满足农药残留分析的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号