首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
羟基磷灰石纳米粒子制备及其对Pb~(2+)离子的吸附性能   总被引:1,自引:0,他引:1  
采用微乳液法与水热合成法相结合的合成手段,探索新的羟基磷灰石纳米材料合成方法,通过改变实验参数,制备出不同形貌的纳米羟基磷灰石,并考察其表面形貌对重金属离子(Pb2+)吸附性能的影响。  相似文献   

2.
羟基磷灰石/凹凸棒土复合材料制备及其对水中镉的去除   总被引:1,自引:0,他引:1  
研究了羟基磷灰石/凹凸棒土复合材料(HA/A)的制备及其对Cd~(2+)的吸附性能.用BET、XRD、SEM、FTIR、XPS对凹凸棒土(A)、羟基磷灰石(HA)和HA/A的结构进行了表征.研究了凹凸棒土的投加量、PO■和Ca~(2+)的初始浓度,高温焙烧对材料制备的影响.研究了材料等温吸附模型,动力学以及热力学;探究了pH、阴离子和材料投加量对吸附Cd~(2+)的影响;研究了竞争吸附实验.结果表明,制备最佳条件为:凹凸棒土投加量为4g·L~(-1),硝酸钙初始浓度为8.23 g·L~(-1),不经高温焙烧;机理分析表明,Cd~(2+)吸附过程是一个单分子层的吸热的化学吸附过程;因素实验表明,高pH值利于Cd~(2+)去除,F~-促进吸附, Cl~-抑制吸附.材料对Pb~(2+)、Cu~(2+)、Cd~(2+)、Zn~(2+)吸附量分别为3.70、1.99、1.17、0.99 mmol·g~(-1).  相似文献   

3.
烟草是我国重要经济作物且极易吸收镉(Cd),如何降低烟草Cd含量已引起广泛关注。通过盆栽实验,在Cd(0.83 mg·kg(-1)和12 mg·kg(-1)和12 mg·kg(-1))污染土壤中添加2 g·kg(-1))污染土壤中添加2 g·kg(-1)或16 g·kg(-1)或16 g·kg(-1)石灰(Ca(OH)_2)、羟基磷灰石(HAP)或秸秆生物炭,分析3种钝化材料对土壤Cd的钝化效率及烟草Cd吸收的降低效率。结果表明:(1)种植60 d后,施用16 g·kg(-1)石灰(Ca(OH)_2)、羟基磷灰石(HAP)或秸秆生物炭,分析3种钝化材料对土壤Cd的钝化效率及烟草Cd吸收的降低效率。结果表明:(1)种植60 d后,施用16 g·kg(-1)石灰或HAP均显著(P<0.05)提高土壤pH值,轻微(0.83 mg·kg(-1)石灰或HAP均显著(P<0.05)提高土壤pH值,轻微(0.83 mg·kg(-1)Cd)、中度(12 mg·kg(-1)Cd)、中度(12 mg·kg(-1)Cd)Cd污染土壤pH值分别提高1.98~2.84和1.99~3.06;(2)3种钝化材料均使土壤Cd有效态含量降低,其中,16 g·kg(-1)Cd)Cd污染土壤pH值分别提高1.98~2.84和1.99~3.06;(2)3种钝化材料均使土壤Cd有效态含量降低,其中,16 g·kg(-1)石灰使土壤Cd有效态含量降低69.7%~71.5%;(3)生物炭(2 g·kg(-1)石灰使土壤Cd有效态含量降低69.7%~71.5%;(3)生物炭(2 g·kg(-1)和16 g·kg(-1)和16 g·kg(-1))显著(P<0.05)提高烟草生物量且降低烟草Cd含量,轻微、中度Cd污染土壤烟草生物量分别提高5.07倍~18.5倍和5.00倍~29.7倍,烟草根、茎、叶Cd含量分别降低68.7%~74.6%、32.1%~50.7%、70.2%~82.5%(轻微)和68.7%~74.6%、51.4%~59.3%、33.2%~46.5%(中度),根、茎、叶Cd富集系数亦显著降低,根(Cd_(0.83):122降至31~38.1,Cd_(12):24.7降至12.2~16.8),茎(Cd_(0.83):203降至35.6~60.6,Cd_(12):41.7降至17.6~23.1),叶(Cd_(0.83):247降至100~120,Cd_(12):48.6降至26.0~32.5);(4)溶液吸附实验发现,HAP和生物炭均通过表面吸附Cd(-1))显著(P<0.05)提高烟草生物量且降低烟草Cd含量,轻微、中度Cd污染土壤烟草生物量分别提高5.07倍~18.5倍和5.00倍~29.7倍,烟草根、茎、叶Cd含量分别降低68.7%~74.6%、32.1%~50.7%、70.2%~82.5%(轻微)和68.7%~74.6%、51.4%~59.3%、33.2%~46.5%(中度),根、茎、叶Cd富集系数亦显著降低,根(Cd_(0.83):122降至31~38.1,Cd_(12):24.7降至12.2~16.8),茎(Cd_(0.83):203降至35.6~60.6,Cd_(12):41.7降至17.6~23.1),叶(Cd_(0.83):247降至100~120,Cd_(12):48.6降至26.0~32.5);(4)溶液吸附实验发现,HAP和生物炭均通过表面吸附Cd(2+),且该吸附过程符合准二级动力学模型,表明在钝化过程中这2种钝化剂与Cd(2+),且该吸附过程符合准二级动力学模型,表明在钝化过程中这2种钝化剂与Cd(2+)发生键能结合的化学吸附。研究表明,3种钝化剂在同等剂量水平下,生物炭提高烟草生物量且降低Cd吸收最显著,可优先选作降低烟草Cd吸收的钝化剂。  相似文献   

4.
添加羟基磷灰石对土壤铅吸附与解吸特性的影响   总被引:7,自引:0,他引:7  
采用羟基磷灰石对四种不同类型的土壤进行铅的吸附-解吸试验.结果表明:四种土壤对铅的吸附均可用Langmuir和Freundlich方程进行描述,土壤中加入羟基磷灰石明显增加了土壤对铅的吸附量和吸附亲和力,同时降低了土壤中铅的解吸百分数,在偏酸性的红壤上表现更为明显,其最大吸附量增加28%.羟基磷灰石对铅吸附的反应机理可能与磷灰石溶解后与铅形成磷酸盐沉淀及其对铅的表面吸附作用有关.土壤对铅的吸附量及吸附亲和力与土壤的有机质、阳离子交换量及粘粒含量有显著正相关,而与土壤砂粒的含量呈负相关.  相似文献   

5.
羟基磷灰石对棕壤和红壤铜吸附的影响   总被引:1,自引:0,他引:1  
采用等温平衡法,观测了羟基磷灰石对红壤、棕壤铜吸附量的影响,并应用Freundlich方程Cs=KfCen分析了土壤铜的吸附特征。结果表明,棕壤对铜的吸附能力明显高于红壤。以n(磷)∶n(铜)=1∶1向棕壤与红壤中施用羟基磷灰石,会增加两种土壤对铜的吸附量。其中,羟基磷灰石影响红壤对铜吸附能力明显高于棕壤。增加羟基磷灰石的施用量,会增加红壤与棕壤对铜的吸附量,提高土壤铜的吸附能力。高量羟基磷灰石[n(磷)∶n(铜)=4∶1]的作用效果最为明显;与对照相比,铜的吸附量分别增加62.1%和28.4%。据此推测,在铜污染红壤或棕壤上,可以选用羟基磷灰石作为磷肥的肥源。  相似文献   

6.
为从污染土壤中吸附移除重金属镉(Cd),将共沉淀法合成的磁性纳米羟基磷灰石(nHAP@Fe3O4)分别按0、0.1%、0.5%、1.0%、3.0%比例添加至土壤中,在修复21、30、45 d时,磁分离nHAP@Fe3O4与土壤,考察nHAP@Fe3O4对土壤Cd的去除、材料的回收效果及修复后土壤理化性质的变化。结果表明,w(Cd)为2.510 mg·kg-1的重污染稻田土壤中添加1.0%nHAP@Fe3O4,修复21 d时土壤Cd去除和材料回收效果最好,Cd平均去除率和材料回收率分别为16.45%和85.33%;nHAP@Fe3O4能明显降低土壤Cd的可交换态,促使其向较稳定的形态转化;经nHAP@Fe3O4修复后的土壤pH值升高,CEC有所降低,土壤颗粒间孔隙增大。利用磁性将nHAP@Fe3<...  相似文献   

7.
蒋宗宏  陈淼  李心清  冯乾伟  王兵 《环境化学》2021,40(12):3846-3860
随着社会经济的不断发展,抗生素造成的水体环境污染问题已不容忽视.利用生物炭去除水体中的抗生素是解决这一问题的有效手段之一.然而,原始生物炭对水体中抗生素等有机污染物的去除存在一定局限性,因此对生物炭进行改性以提升其吸附能力尤为必要.生物炭的吸附性能受生物质类型、碳化条件和改性方法等因素影响较大,导致目前虽然开展了许多相...  相似文献   

8.
以硝酸锌为原料,明胶为模板分散剂,采用凝胶模板燃烧法制备纳米ZnO.利用TG-DTA,FT-IR,XRD,TEM和HPLC等手段对制备过程、样品的结构和性能进行了研究,探讨燃料及氧化剂的比例以及热处理温度的变化对产物粒径和光催化活性的影响.结果表明:产物粒子形状为球形,属六方晶系结构且无杂相.以染料罗丹明B溶液为目标降解物,1h的降解率为99.9%,最佳光催化剂的合成条件为:燃料与氧化剂的比例为0.84,400℃热处理3h.  相似文献   

9.
以污染土壤中检出量较高的PCB118为目标污染物,采用银杏叶提取液绿色合成纳米铁材料(nZVI)、玉米秸秆制备生物炭(BC),将nZVI负载在BC表面合成生物炭负载纳米零价铁复合材料(BC-nZVI),利用制备的BC-nZVI复合材料催化活化过硫酸盐(PS)去除土壤中PCB118。主要探讨了在生物炭负载纳米零价铁活化过硫酸盐体系(BC-nZVI/PS)中复合材料BC-nZVI碳铁比及其投加量、PS浓度、pH值、温度等因素对PCB118去除速率的影响。结果表明,反应时间为24h时,碳铁比为2?1时BC-nZVI反应体系对土壤中PCB118去除效果优于其他3种比例。实验条件下,随着BC-nZVI的投加量由0.002 g增加到0.500 g,PS浓度由0.05 mol·L-1增至0.35 mol·L-1,温度由15℃升高到45℃,土壤中PCB118的去除率分别增加了32.4%、10.6%及14.7%。随着溶液初始pH值由3升到9,土壤中PCB118的去除率降低了11.4%。单因素实验数据显示,在BC-nZVI的投加量为0.500 g,PS浓度为0....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号