共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions,
were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These
methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands
of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field
losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and
solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective
attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution
being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated
and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological
tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation
and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications
of the general mathematical formulations and the experimental values of the model parameters provided by the study can be
used in further application of these methodologies in watersheds with similar characteristics. 相似文献
3.
Heather E. Golden Elizabeth W. Boyer Michael G. Brown S. Thomas Purucker René H. Germain 《Journal of the American Water Resources Association》2009,45(4):945-962
Abstract: Nitrate‐nitrogen (NO3‐N) concentrations in stream water often respond uniquely to changes in inter‐annual conditions (e.g., biological N uptake and precipitation) in individual catchments. In this paper, we assess (1) how the spatial distribution of NO3‐N concentrations varies across a dense network of nonnested catchments and (2) how relationships between multiple landscape factors [within whole catchments and hydrologically sensitive areas (HSAs) of the catchments] and stream NO3‐N are expressed under a variety of annual conditions. Stream NO3‐N data were collected during two synoptic sampling events across >55 tributaries and two synoptic sampling periods with >11 tributaries during summer low flow periods. Sample tributaries drain mixed land cover watersheds ranging in size from 0.150 to 312 km2 and outlet directly to Cayuga Lake, New York. Changes in NO3‐N concentration ratios between each sampling event suggest a high degree of spatial heterogeneity in catchment response across the Cayuga Lake Watershed, ranging from 0.230 to 61.4. Variations in NO3‐N concentrations within each of the large synoptic sampling events were also high, ranging from 0.040 to 8.7 mg NO3‐N/l (March) and 0.090 to 15.5 mg NO3‐N/l (October). Although Pearson correlation coefficients suggest that this variability is related to multiple landscape factors during all four sampling events, partial correlations suggest percentage of row crops in the catchments as the only similar factor in March and October and catchment area as the only factor during summer low flows. Further, the strength of the relationships is typically lower in the HSAs of catchment. Advancing current understanding of such variations and relationships to landscape factors across multiple catchments – and under a variety of biogeochemical and hydrological conditions – is important, as (1) nitrate continues to be employed as an indicator of regional aquatic ecosystem health and services and (2) a unified framework approach for understanding individual catchment processes is a rapidly evolving focus for catchment‐based science and management. 相似文献
4.
Effects of Stonewalled Terracing Techniques on Soil-Water Conservation and Wheat Production Under Mediterranean Conditions 总被引:2,自引:0,他引:2
A field plot experiment was conducted in the Palestinian Autonomous Areas to study the effect of stonewalled terracing on soil and water conservation as compared to the nonterraced areas. Effects of the wheat canopy were considered as a second treatment. The experiment was undertaken over a period of two seasons (2000 and 2001). The results of the experiment found that the mean soil erosion was significantly lower (P < 0.05) in the terraced plots than in those that were nonterraced (182 kg/ha and 3525 kg/ha during the first season, 1769 kg/ha and 5057 kg/ha during the second season for terraced and nonterraced plots, respectively). A similar trend was observed with respect to runoff in areas under the same treatments. The wheat canopy showed lower, but not significant runoff and erosion in most of the cases for both seasons. Due to better soil and water conservation, the terraced plots obtained significantly higher total plant dry matter than nonterraced plots (1570 and 630 kg/ha in 2000, 2545 and 889 kg/ha in 2001 for terraced and nonterraced treatment, respectively). The runoff coefficient was 20% and 4% for the nonterraced and terraced plots, respectively. Rainstorms with intensity ≥4 mm/hand rainfall ≥10 mm are more likely to cause runoff and erosion. 相似文献
5.
Hyunwoo Kang Venkataramana Sridhar 《Journal of the American Water Resources Association》2018,54(1):160-183
Impacts of climate change on the severity and intensity of future droughts can be evaluated based on precipitation and temperature projections, multiple hydrological models, simulated hydrometeorological variables, and various drought indices. The objective of this study was to assess climate change impacts on future drought conditions and water resources in the Chesapeake Bay (CB) watershed. In this study, the Soil and Water Assessment Tool (SWAT) and the Variable Infiltration Capacity model were used to simulate a Modified Palmer Drought Severity Index (MPDSI), a Standardized Soil Moisture index (SSI), a Multivariate Standardized Drought Index (MSDI), along with Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models for both historical and future periods (f1: 2020‐2049, f2: 2050‐2079). The results of the SSI suggested that there was a general increase in agricultural droughts in the entire CB watershed because of increases in surface and groundwater flow and evapotranspiration. However, MPDSI and MSDI showed an overall decrease in projected drought occurrences due to the increases in precipitation in the future. The results of this study suggest that it is crucial to use multiple modeling approaches with specific drought indices that combine the effects of both precipitation and temperature changes. 相似文献
6.
7.
建立了黄瓜和土壤中啶氧菌酯残留量的检测分析方法,对啶氧菌酯在黄瓜和土壤中的消解动态及残留规律进行了研究。啶氧菌酯的最小检出量为3.5×10^-11g;在黄瓜和土壤基质中的最低检出浓度均为0.005mg·kg^-1。对黄瓜和土壤2种基质,设置了0.005、0.05、0.25 mg·kg^-13个添加水平,每个添加水平设置5个重复,啶氧菌酯在黄瓜和土壤中的添加回收率为68.61%-122.4%,变异系数为1.06%-17.2%。田间试验结果表明:啶氧菌酯在天津地区黄瓜和土壤中的残留消解半衰期分别为5.71d和12.9 d,在山东地区黄瓜和土壤中的残留消解半衰期分别为2.70d和10.3 d,在江苏地区黄瓜和土壤中的残留消解半衰期分别为9.76d和14.9 d。距最后一次施药5d时,啶氧菌酯在黄瓜中的最高残留量为0.014mg·kg^-1,远低于欧盟规定的黄瓜中啶氧菌酯最大残留限量0.05mg·kg^-1。 相似文献
8.
9.
Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water
management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order
to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences,
such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery
within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls
Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate
annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y,
respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment
sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences.
Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested
areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances
(ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites
must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale. 相似文献
10.
James F. Fox Athanasios N. Papanicolaou 《Journal of the American Water Resources Association》2007,43(4):1047-1064
Abstract: Tracer studies are needed to better understand watershed soil erosion and calibrate watershed erosion models. For the first time, stable nitrogen and carbon isotopes (δ15N and δ13C) and the carbon to nitrogen atomic ratio (C/N) natural tracers are used to investigate temporal and spatial variability of erosion processes within a sub‐watershed. Temporal variability was assessed by comparing δ15N, δ13C, and C/N of eroded‐soils from a non‐equilibrium erosion event immediately following freezing and thawing of surface soils with two erosion events characterized by equilibrium conditions with erosion downcutting. Spatial variability was assessed for the equilibrium events by using the δ15N and δ13C signatures of eroded‐soils to measure the fraction of eroded‐soil derived from rill/interrill erosion on upland hillslopes as compared to headcut erosion on floodplains. In order to perform this study, a number of tasks were carried out including: (1) sampling source‐soils from upland hillslopes and floodplains, (2) sampling eroded‐soils with an in situ trap in the stream of the sub‐watershed, (3) isotopic and elemental analysis of the samples using isotope ratio mass spectrometry, (4) fractioning eroded‐soil to its upland rill/interrill and floodplain headcut end‐members using an unmixing model within a Bayesian Markov Chain Monte Carlo framework, and (5) evaluating tracer unmixing model results by comparison with process‐based erosion prediction models for rill/interrill and headcut erosion processes. Results showed that finer soil particles eroded during the non‐equilibrium event were enriched in δ15N and δ13C tracers and depleted in C/N tracer relative to coarser soil particles eroded during the equilibrium events. Correlation of tracer signature with soil particle size was explainable based on known biogeochemical processes. δ15N and δ13C were also able to distinguish between upland rill/interrill erosion and floodplain headcut erosion, which was due to different plant cover at the erosion sources. Results from the tracer unmixing model highlighted future needs for coupling rill/interrill and headcut erosion prediction models. 相似文献
11.
本文论述了水土水流失对生态环境的影响和对农业生产的危害,阐明增强环境意识,加强水土保持时防止生态恶化,是我国振兴农业的重要性与紧迫性的任务。 相似文献
12.
Daily Bank Erosion Rates in the Lower Yellow River Before and After Dam Construction 总被引:1,自引:0,他引:1
Junqiang Xia Tao Li Xiaojuan Li Xiaolei Zhang Quanli Zong 《Journal of the American Water Resources Association》2014,50(5):1325-1337
During the period of water impoundment and sediment detention of the Sanmenxia Reservoir, riverbank erosion processes played a key role in the channel evolution of the Lower Yellow River (LYR). However, research into bank erosion rates of the LYR has been neglected due to the lack of direct field monitoring. In this study, an indirect method is proposed to determine bank erosion rates at daily time scales by outlining a detailed calculation procedure using measured hydrological data. A total of 810 data points of daily bank erosion rates before and after the construction of Sanmenxia Dam was calculated at seven hydrometric sections along the LYR, with the corresponding values of the bank stability coefficient and the width‐to‐depth ratio also being calculated. Empirical relations were then developed to estimate the daily bank erosion rates, using these parameters at the sections. Temporal and spatial variability in daily bank erosion rates in the LYR before and after dam construction were also investigated, revealing that: (1) the bank erosion rates had a mean value of 16.7‐29.1 m/day in the braided reach, with a maximum value of 290.0 m/day, while they were relatively low in the meandering reach, with a mean value of 2.5 m/day; (2) the erosion rates before dam construction were slightly greater than those after dam construction, with the difference reaching 5‐10 m/day in the braided reach, decreasing in the transitional reach gradually, and being slight in the meandering reach. 相似文献
13.
Impact of Vegetative Cover on Runoff and Soil Erosion at Hillslope Scale in Lanjaron, Spain 总被引:3,自引:0,他引:3
Soil loss and surface runoff patterns over a four-year period (1997–2000) were studied in erosion plots from three hillslopes under different vegetative covers (Rosmarinus officinalis, Triticum aestivum and natural-spontaneous vegetation) in Lanjaron (Alpujarras) on the south flank of the Sierra Nevada of southeast Spain. The erosion plots were located on the hillslopes at 35.5% incline, at 1,480 m in altitude and with 41.8 m2 (21 m×1.9 m) in area. The vegetative covers were tested for effectiveness in controlling the surface runoff and soil loss production. The highest runoff and erosion values, ranging from 114.1 to 1.7 mmyr–1 and from 14,564.3 to 6.6 kgha–1yr–1, respectively, over the entire study period, were measured under the Triticum aestivum. In the Rosmarinus officinalis, runoff ranged from 7.9 to 1.3 mmyr–1 and erosion from 156.4 to 2.3 kgha–1yr–1, while on the hillslope under natural-spontaneous vegetation, runoff ranged from 4.4 to 0.9 mmyr–1 and erosion from 322.3 to 2.2 kgha–1yr–1. According to the results the vegetative covers of Rosmarinus officinalis and natural-spontaneous vegetation reduced the soil losses by 99 and 98%, with respect to the Triticum aestivum, and the runoff losses by 94 and 96%, respectively. Also, the Rosmarinus officinalis and natural-spontaneous plants influenced infiltration by intercepting much of the rainfall water respect to the Triticum aestivum. Monitoring allowed more direct linkages to be made between management practices and their impacts on runoff and soil erosion, thereby enabling to identify problems and take appropriate preventive measures to improve the management practices. 相似文献
14.
葫芦岛市水土流失防控体系建设研究 总被引:1,自引:0,他引:1
杨卓 《中国环境管理干部学院学报》2011,(5):33-35
分析了葫芦岛市水土流失现状及水土保持方面存在的问题,提出水土流失防控体系建设策略。建议采取水土流失分区治理、工程措施、林业措施、管理措施等建设葫芦岛市水土流失防控体系。 相似文献
15.
利用3S技术和景观生态学原理,以小流域为单元对秦皇岛市土地利用结构和土壤侵蚀等级类型进行空间分析,得出了不同土地利用结构所占面积和不同土壤侵蚀类型所占面积及分布小流域,并详细分析了秦皇岛市土壤侵蚀的主要影响因子和不同土地利用结构侵蚀现状。 相似文献
16.
Soils in the Mediterranean area are very prone to erosion due to the loss of organic matter and the consequent lack of protective vegetation. In this experiment a Mediterranean degraded soil with a 15% slope was amended at a rate of 250 t ha–1 wet weight with sewage sludge and with a mixture of sewage sludge and barley straw (70% carbon from sewage sludge and 30% from the straw) in order to study their influence on soil structure recovery and hence the soilss resistance to erosion processes. Both types of organic amendment led to an improvement in several soil properties (physical, biological, and microbiological) as a result of the spontaneous growth plant covering that became evident three months after amendment. This vegetation remained throughout the two years of the experiment and prevented the water erosion processes that normally precede soil degradation. Amendment by sewage sludge alone reduced soil loss by 80% compared with the control soil, while the mixture that included both sewage sludge and barley straw reduced losses by 84%, both reducing runoff by 57%. The amended soils showed increases in the percentage of stable aggregates, the levels of the total and water-soluble C fractions, microbial biomass C, basal respiration, and the activity of the different enzymes involved in the biogeochemical cycles of C, N, and P. The results confirm the usefulness of sewage sludge as an organic amendment for recovering damaged soils. 相似文献
17.
Floodplain Trapping and Cycling Compared to Streambank Erosion of Sediment and Nutrients in an Agricultural Watershed 下载免费PDF全文
Jaimie L. Gillespie Gregory B. Noe Cliff R. Hupp Allen C. Gellis Edward R. Schenk 《Journal of the American Water Resources Association》2018,54(2):565-582
Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient‐enriched floodplain soils could pose a long‐term source of sediment and nutrients to downstream rivers. 相似文献
18.
大别山区是土壤侵蚀较为强烈的地区之一,严重的土壤侵蚀不但恶化了自然环境,而且制约着该区域经济社会的可持续发展.在GIS的支持下,通过建立土壤侵蚀数据库获取有关土壤侵蚀量以及土壤侵蚀环境分析所需的基础数据,然后根据环境经济学相关的基本原理和方法对土壤侵蚀进行了货币化估算,以达到土壤侵蚀经济损失估值的目的. 相似文献
19.
20.
介绍头屯河流域气候、植被、水土资源状况,分析了流域水土流失的现状,提出了水土流失治理对策,总结了水土流失治理措施并提出一些建议。 相似文献