首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two bottom ashes, one air pollution control (APC) residue and one fly ash from three different Swedish municipal solid waste incineration (MSWI) plants were characterised regarding the leaching of environmentally relevant components. Characterisation was performed using a diffusion tank leaching test. The impact of carbonation on the release of eight critical components, i.e., Cl(-), Cr, Cu, Mo, Pb, Sb, Se, SO(4)(2-) and Zn, was assessed at a lab-scale and showed carbonation to have a more pronounced demobilising effect on critical components in bottom ashes than in APC residue and fly ash. From grate type incinerator bottom ash, the release of Cr decreased by 97%, by 63% for Cu and by 45% for Sb. In the investigated APC residue, the releases of Cr, Se and Pb were defined as critical, although they either remained unaffected or increased after carbonation. Cl(-) and SO(4)(2-) remained mobile after carbonation in all investigated residues.  相似文献   

2.
Porosity is possibly an important parameter with respect to leaching of constituents from cement monoliths. During its lifetime, the pore structure of cementitious matrices changes due to carbonation and leaching. This paper discusses the effects of both accelerated carbonation and continuous leaching on the porosity, and, conversely, how porosity affects leaching properties. Two sample types are investigated: a mortar with MSWI-bottom ash substituting the sand fraction and a cement paste with 30 wt% of the cement substituted by a flue gas cleaning residue. The samples have been intensively carbonated in a 20% CO(2) atmosphere for up to 60 days and were subsequently leached. The porosity was investigated by mercury intrusion porosimetry. Accelerated carbonation decreases total porosity by 12% in the case of 60 days of treatment of bottom ash mortars, whereas continuous leaching during 225 days increases it by 16%. Both carbonation and leaching decrease the amount of smaller capillary pores. Carbonation decreases both porosity and pH. Decreasing porosity diminishes leaching of sodium and potassium, while the decrease in pH increases leaching. However, the former process dominates the latter, resulting in a net decreasing effect of carbonation on the release of sodium and potassium from these cement matrices.  相似文献   

3.
In municipal solid waste incineration (MSWI), bottom ash, generated at a stoker grate type incinerator, the critical elements were identified in terms of EU regulation. The stabilizing effect of moderate carbonation (pH 8.28 ± 0.03) on critical contaminants was studied through availability and diffusion leaching protocols. Data from the performed tests were evaluated with the goal of reusing MSWI bottom ash as secondary construction material. To investigate the mobilizing effect of CO2, suspended MSWI bottom ash was severely carbonated (pH 6.40 ± 0.07). The effect of CO2 and its interaction with other leaching factors, such as liquid/solid (L/S) ratio, leaching time, pH, ultrasound treatment, and leaching temperature, were examined using a reduced 26-1 experimental design. Contaminants identified as critical were Cr, Cu, Mo, Sb, Cl, and SO4 2−. Although moderate carbonation decreased the release of Cr, Cu, Mo, and Sb from compacted bottom ash, the main disadvantage remains its inability to demobilize Cl and SO4 2−. The hypothesized mobilizing effect of severe carbonation was proven. The treatment enhanced the separation of critical components (α = 0.05) (except for Cl), i.e., about fivefold for Sb and about twofold for Cr, Cu, and S. Nevertheless, the prospect is good that severe carbonation could constitute the deciding key parameter to facilitate the technical feasibility of a future washing process for MSWI bottom ash.  相似文献   

4.
In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1–2 mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required.Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h.Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation.  相似文献   

5.
This work presents the results of a study on accelerated carbonation of incinerator air pollution control residues, with a particular focus on the modifications in the leaching behaviour of the ash. Aqueous carbonation experiments were carried out using 100% CO2 at different temperatures, pressures and liquid-to-solid ratios, in order to assess their influence on process kinetics, CO2 uptake and the leaching behaviour of major and trace elements. The ash showed a particularly high reactivity towards CO2, owing to the abundance of calcium hydroxides phases, with a maximum CO2 uptake of ~250 g/kg. The main effects of carbonation on trace metal leaching involved a significant decrease in mobility for Pb, Zn and Cu at high pH values, a slight change or mobilization for Cr and Sb, and no major effects on the release of As and soluble salts. Geochemical modelling of leachates indicated solubility control by different minerals after carbonation. In particular, in the stability pH range of carbonates, solubility control by a number of metal carbonates was clearly suggested by modelling results. These findings indicate that accelerated carbonation of incinerator ashes has the potential to convert trace contaminants into sparingly soluble carbonate forms, with an overall positive effect on their leaching behaviour.  相似文献   

6.
This paper investigates the effects of accelerated carbonation on the characteristics of bottom ash from refuse derived fuel (RDF) incineration, in terms of CO2 uptake, heavy metal leaching and mineralogy of different particle size fractions. Accelerated aqueous carbonation batch experiments were performed to assess the influence of operating parameters (temperature, CO2 pressure and L/S ratio) on reaction kinetics. Pressure was found to be the most relevant parameter affecting the carbonation yield. This was also found to be largely dependent on the specific BA fraction treated, with CO2 uptakes ranging from ~4% for the coarse fractions to ~14% for the finest one. Carbonation affected both the mineralogical characteristics of bottom ash, with the appearance of neo-formation minerals, and the leaching behaviour of the material, which was found to be mainly related to the change upon carbonation in the natural pH of the ash.  相似文献   

7.
Accelerated carbonation of municipal solid waste incineration residues is effective for immobilizing heavy metals. In this study, the contribution of the physical containment by carbonation to immobilization of some heavy metals was examined by some leaching tests and SEM–EDS analysis of untreated, carbonated, and milled bottom ash after carbonation that was crushed with a mortar to a mean particle size of approximately 1 μm. The surface of carbonated bottom ash particles on SEM images seemed mostly coated, while there were uneven micro-spaces on the surface of the untreated bottom ash. Results of Japan Leaching Test No. 18 (JLT18) for soil pollution showed that milling carbonated bottom ash increased the pH and EC. The leaching concentration of each element tended to be high for untreated samples, and was decreased by carbonation. However, after the milling of carbonated samples, the leaching concentration became high again. The immobilization effect of each element was weakened by milling. The ratio of physical containment effect to immobilization effects by accelerated carbonation was calculated using the results of JLT18. The ratio for each element was as follows: Pb: 13.9–69.0 %, Cu: 12.0–49.1 %, Cr: 24.1–99.7 %, Zn: 20.0–33.3 %, and Ca: 28.9–63.4 %.  相似文献   

8.
Waste management is in need of a reliable and economical treatment method for metals in fly ashes from municipal solid waste incineration (MSWI). However, no state-of-the-art technique has gained wide acceptance yet. This paper is a synthesis of five elsewhere published investigations covering a project which aimed to assess the possibilities and limitations of adding carbon dioxide (CO2) to fly ash as a stabilization method. Carbonation factors that were studied are the partial pressure of carbon dioxide (CO2), the addition of water, the temperature, and the reaction time. Laboratory experiments were performed applying methods such as factorial experimental design, thermal analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and leaching assays including pHstat titration and sequential extraction. Leaching data were verified and complemented using chemical equilibrium calculations. Data evaluation was performed by means of multivariate statistics such as multiple linear regression, principal component analysis (PCA), and partial least squares (PLS) modeling. It was found that carbonation is a good prospect for a stabilization technique especially with respect to the major pollutants lead (Pb) and zinc (Zn). Their mobility decreased with increasing factor levels. Dominating factors were the partial pressure of CO2 and the reaction time, while temperature and the addition of water were of minor influence. However, the treatment caused a mobilization of cadmium (Cd), requiring further research on possible countermeasures such as metal demobilization through enhanced silicate formation.  相似文献   

9.
10.
Temporary stabilization of air pollution control residues using carbonation   总被引:1,自引:0,他引:1  
Carbonation presents a good prospect for stabilizing alkaline waste materials. The risk of metal leaching from carbonated waste was investigated in the present study; in particular, the effect of the carbonation process and leachate pH on the leaching toxicity of the alkaline air pollution control (APC) residues from municipal solid waste incinerator was evaluated. The pH varying test was conducted to characterize the leaching characteristics of the raw and carbonated residue over a broad range of pH. Partial least square modeling and thermodynamic modeling using Visual MINTEQ were applied to highlight the significant process parameters that controlled metal leaching from the carbonated residue. By lowering the pH to 8-11, the carbonation process reduced markedly the leaching toxicity of the alkaline APC residue; however, the treated APC residue showed similar potential risk of heavy metal release as the raw ash when subjected to an acid shock. The carbonated waste could, thereby, not be disposed of safely. Nonetheless, carbonation could be applied as a temporary stabilization process for heavy metals in APC residues in order to reduce the leaching risk during its transportation and storage before final disposal.  相似文献   

11.
The leaching potential of heavy metals from a roadway embankment constructed of fly ash and soil mixture was studied. Leaching of eight environmentally concerned metals Ag, As, Ba, Cd, Cr, Hg, Pb, and Se from the fly ash–soil mixtures was examined through batch leaching test and column leaching test. The batch leaching test results showed that the fly ash meets the local regulatory standards for beneficial use of nonhazardous wastes. The column leach test revealed that only Ba, Cr, and Se were detectable in the effluents. The peak concentration of Ba in the effluents was much lower than the US EPA Primary Drinking Water Regulations’ maximum contaminant level (MCL). The peak concentrations of Cr and Se exceeded the MCLs only in the initial flush stage and quickly decreased to below the MCLs. Results of this study suggest a great potential for fly ash to be used in roadway embankments to enhance their mechanical properties, reduce the use of soil, and avoid the disposal of fly ash as waste.  相似文献   

12.
Impacts of non-equilibrium on results of percolation experiments on municipal solid waste incineration (MSWI) bottom ash were investigated. Three parallel column experiments were performed: two columns with undisturbed percolation and one column with two sets of 1-month-long flow interruptions applied at liquid-to-solid (L/S) ratios of L/S 2L/kg and 12L/kg, respectively. Concentrations of Na, K, Cl(-), Ca, Si, SO(4)(2-), Al, Cu, Ni, Mo, Ba, Pb, Zn, and dissolved organic carbon (DOC) were monitored throughout the entire leaching period; geochemical modeling was used to identify non-equilibrium-induced changes in the solubility control. Despite both physical and chemical non-equilibrium, the columns were found to provide adequate information for readily soluble compounds (i.e., Na, Cl(-), and K) and solubility-controlled elements (i.e., Ca, SO(4)(2-), Ba, Si, Al, Zn, and Pb). The leaching of Cu and Ni was shown to depend strongly on DOC leaching, which was likely affected by physical non-equilibrium during flow interruptions. Consequently, the leaching of Cu and Ni in the undisturbed columns was shown to be by about one order of magnitude lower compared with the interrupted column. The results indicate that the leaching of DOC-related metals in laboratory column experiments may be considerably underestimated compared with full-scale scenarios in which the impacts from non-equilibrium may be significantly lower. The leaching of Mo (or MoO(4)(2-)) may be controlled solely by its availability in the mobile zone, which in turn appeared to be controlled by diffusion from the stagnant zone; no Mo controlling minerals were predicted by the geochemical modeling.  相似文献   

13.
Two new pre-treatment methods (water-washing/carbonation and carbonation/phosphate stabilization) of municipal solid waste (MSW) incinerator residues were evaluated by column leaching tests under aerobic conditions and anaerobic conditions (which were changed to aerobic conditions after 10 months). A mixture of bottom ash and fly ash (5:1 ratio) was pre-treated using each method. Shredded incombustible residues (SIR) were added to each ash preparation in proportions similar to the ratios present in landfills. For comparison, landfill wastes typical of Japan, namely, a mixture of bottom ash, chelating-pre-treated fly ash, and SIR, were also examined. Leachate samples were collected periodically and analysed over a 15-month period. When compared with chelating pretreatment, both water-washing/carbonation and carbonation/ phosphate stabilization reduced the leaching of Pb, Al, and Cu by about one to two orders of magnitude. Moreover, the initial concentrations of Ca and Pb in leachates from column of water-washing/carbonation were 56-57% and 84-96% less than those from the column of carbonation/phosphate stabilization. Therefore, water-washing/carbonation was considered to be a promising approach to obtain early waste stabilization and to reduce the release of heavy metals to near-negligible levels. The leaching behaviour of elements was also discussed.  相似文献   

14.
Leaching of Al, Ca, Mg, Si, S, Ba, Sr, Mo, Zn, Cd, Pb, and Cu from waste incineration air-pollution-control (APC) residues was investigated. Real-life conditions, i.e. removal of readily soluble compounds and longer equilibration time, were considered. Three different pH-static leaching experiments evaluating the importance of salt level and equilibration time were performed: (i) 48-h test on untreated APC residue samples, (ii) 48-h test on washed residue samples, and finally (iii) a 172-h test on washed residue samples. Experimental data were evaluated by geochemical modelling to identify potential solubility controlling minerals. For some elements (Al, Ca, Mg, Si, S, Mo, Zn, Cd, and Cu) the same controlling minerals were suggested regardless of the equilibration period or untreated/washed character of the tested material, whereas leaching of other elements (Ba, Sr) was far better described by considering a longer equilibration time, thereby pointing out the kinetic effects. Finally, a significant fraction of total lead (57%) was found to be rather mobile in the initial stage of leaching. Both pre-washing of the residues and longer equilibration times were shown to be simple yet useful methods to identify mineral phases that could control the release of constituents after the removal of readily soluble compounds in the initial stage of leaching.  相似文献   

15.
Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH ± 12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained below these limit values at the relatively high pH that remained after carbonation. The V-bearing di-Ca silicate (C2S) phase has been identified as the major source of the V-leaching. It is shown that the dissolution of this mineral is limited in fresh steel slag, but strongly enhanced by carbonation, which causes the observed enhanced release of V from the K3 slag. The obtained insights in the mineral transformation reactions and their effect on pH and V-leaching provide guidance for further improvement of an accelerated carbonation technology.  相似文献   

16.
Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations, however, have had a strong emphasis on lab experiments with little focus on full-scale bottom ash upgrading methods. The introduction of regulatory limit values restricting leaching from utilized bottom ashes, has created a need for a better understanding of how lab-scale experiences can be utilized in full-scale bottom ash upgrading facilities, and the possibilities for complying with the regulatory limit values. A range of Danish research and development projects have, during 1997-2005, investigated important techniques for bottom ash upgrading. The primary focus has been placed on curing/aging, washing with and without additives, organic matter, sampling techniques, utilization options, and assessment tools. This paper provides an overview of these projects. The main results and experiences are discussed and evaluated with respect to bottom ash upgrading and utilization. Based on this discussion, development needs and potential management strategies are identified.  相似文献   

17.
Incineration has become the main mechanism for hospital waste (HW) disposal in China after the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003. However, little information is available on the chemical properties of the resulting ashes. In the present study, 22HW ash samples, including 14 samples of bottom ash and eight samples of fly ash, were collected from four typical HW incineration plants located across China. Chemical analysis indicated that the HW ashes contained large amounts of metal salts of Al, Ca, Fe, K, Mg, Na with a concentration range of 1.8-315gkg(-1). Furthermore, the ashes contained high concentrations of heavy metals such as Ag, As, Ba, Bi, Cd, Cr, Cu, Mn, Ni, Pb, Ti, Sb, Sn, Sr, Zn with a vast range of 1.1-121,411mgkg(-1), with higher concentrations found in the fly ash samples. Sequential extraction results showed that Ba, Cr, Ni and Sn are present in the residual fraction, while Cd existed in the exchangeable and carbonate fractions. As, Mn, Zn existed in the Fe-Mn oxide fraction, Pb was present in the Fe-Mn oxide and residual fractions, and Cu was present in the organic matter fraction. Furthermore, toxicity characteristic leaching procedure (TCLP) results indicated that leached amounts of Cd, Cu and Pb from almost all fly ash samples exceeded the USEPA regulated levels. A comparison between the HW ashes and municipal solid waste (MSW) ash showed that both HW bottom ash and fly ash contained higher concentrations of Ag, As, Bi, Cd, Cr, Cu, Pb, Ti, and Zn. This research provides critical information for appropriate HW incineration ash management plans.  相似文献   

18.
In Finland, the new limit values for heavy metals in fertilizers used in agriculture and in forestry came into force in March 2007, and for materials used as earth construction agents, in June 2006. From the utilization point of view, it was notable that the total heavy metal concentrations (Cd, Cu, Pb, Cr, Mo, Zn, As, Ni, Ba, and Hg) in fly ash from a coal-fired power plant were lower than those limit values. The concentrations of the easily soluble elements Ca, Mg, Na, P, and Zn in the fly ash were between 3.5 and 35 times higher than those found in the coarse mineral soils of Finland. Fly ash is a potential agent for soil remediation and for improving soil fertility. If inorganic materials and by-products are utilized in earthworks, the content of harmful compounds must be low and the harmful components must be tightly bound to the matrix. Therefore, a five-stage sequential extraction procedure was used to evaluate the extractability of different elements in fly ash into the following fractions: (1) the water-soluble fraction, (2) the exchangeable fraction (CH3COOH), (3) the easily reduced fraction (NH2OH-HCl), (4) the oxidizable fraction (H2O2 + CH3COONH4), and (5) the residual fraction (HF + HNO3 + HCl).  相似文献   

19.
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion.  相似文献   

20.
Characterization of the leaching behavior of wastes is a crucial step in the environmental assessment for reuse or disposal scenarios. The release of inorganic contaminants from waste materials is typically evaluated by tank leaching of continuously water-saturated material. However, materials, in many field or management scenarios, experience cyclic wetting and drying under varied environmental conditions (i.e. variable relative humidity, atmospheric CO2 or CO2 from biologic activities). During periods of storage in an unsaturated environment, many processes may occur that can influence the release potential and release rate of inorganic constituents. The research presented here was carried out to examine how the phenomena of carbonation during drying influence the release of inorganic contaminants from Portland cement-based materials during cyclic wetting and storage. Batch equilibrium leaching tests were used to determine constituent solubility as a function of pH. Dynamic leaching tests on monolithic material were carried out to determine the rate of constituent release as a function of leaching time and intermittent storage conditions. This paper presents the results observed for three typical waste constituents, arsenic, cadmium and lead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号