首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen transport across the capillary fringe is relevant for many biogeochemical processes. We present a non-invasive technique, based on optode technology, to measure high-resolution concentration profiles of oxygen across the unsaturated/saturated interface. By conducting a series of quasi two-dimensional flow-through laboratory experiments, we show that vertical hydrodynamic dispersion in the water-saturated part of the capillary fringe is the process limiting the mass transfer of oxygen. A number of experimental conditions were tested in order to investigate the influence of grain size and horizontal flow velocity on transverse vertical dispersion in the capillary fringe. In the same setup, analogous experiments were simultaneously carried out in the fully water-saturated zone, therefore allowing a direct comparison with oxygen transfer across the capillary fringe. The outcomes of the experiments under various conditions show that oxygen transport in the two zones of interest (i.e., the unsaturated/saturated interface and the saturated zone) is characterized by very similar transverse dispersion coefficients. An influence of the capillary fringe morphology on oxygen transport has not been observed. These results may be explained by the narrow grain size distribution used in the experiments, leading to a steep decline in water saturation at the unsaturated/saturated interface and to the absence of trapped gas in this transition zone. We also modeled flow (applying the van Genuchten and the Brooks-Corey relationships) and two-dimensional transport across the capillary fringe, obtaining simulated profiles of equivalent aqueous oxygen concentration that were in good agreement with the observations.  相似文献   

2.
Assessing the potential of natural attenuation in groundwater relies on the ability to predict and quantify the processes that occur in contaminant plumes. Transverse dispersion is a significant mass transfer mechanism for mixing of electron acceptors and donors and thus may control the lengths of steady state plumes. Laboratory experiments were carried out using a 2-dimensional acrylic glass tank filled with glass beads, quartz sand and field site material as porous media. Flow velocities and grain sizes were varied in order to cover a large range of Peclet numbers including typical field scenarios. The laboratory study was extended by a comprehensive literature search to compare the new results with earlier work. As a result we propose a new empirical relationship for prediction of transverse dispersion coefficients (Dt) which is based on the Peclet number (Pe). This new relationship indicates a nonlinear dependency on the flow velocity (nu a) and grain size (d), namely a relative decrease of the dispersion coefficient with increasing flow velocity in relatively fast flowing water: Dt/Daq=Dp/Daq+0.28(Pe)0.72 (with Pe=nu a d/Daq; Daq and Dp denote the aqueous and pore diffusion coefficients, resp.).  相似文献   

3.
河道污染质垂向迁移对地下水影响的研究   总被引:4,自引:1,他引:4  
包气带是连接地表水和地下水的重要通道,对地下水资源有很好的"屏障"功能,而近年来工农业废水及生活污水的大量排放已影响到了地下水的"安全".为此,在渭河河漫滩进行了模拟河流的垂向入渗试验,并通过建立数学模型对水分和六价铬在具有弱透水层的多层介质中的迁移进行了模拟运算.试验和模拟结果一致表明,弱透水层虽对地下水有很好的保护作用,但在上部土壤层易形成面状污染带,而且由于大的浓度梯度作用,一旦污染质穿透该层将很快污染到地下水.  相似文献   

4.
Organic contaminants that decrease the surface tension of water (surfactants) can have an effect on unsaturated flow through porous media due to the dependence of capillary pressure on surface tension. We used an intermediate-scale 2D flow cell (2.44 x 1.53 x 0.108 m) packed with a fine silica sand to investigate surfactant-induced flow perturbations. Surfactant solution (7% 1-butanol and dye tracer) was applied at a constant rate at a point source located on the soil surface above an unconfined synthetic aquifer with ambient groundwater flow and a capillary fringe of approximately 55 cm. A glass plate allowed for visual flow and transport observations. Thirty instrumentation stations consist of time domain reflectometry probes and tensiometers measured in-situ moisture content and pressure head, respectively. As surfactant solution was applied at the point source, a transient flow perturbation associated with the advance of the surfactant solution was observed. Above the top of the capillary fringe the advance of the surfactant solution caused a visible drainage front that radiated from the point source. Upon reaching the capillary fringe, the drainage front caused a localized depression of the capillary fringe below the point source because the air-entry pressure decreased in proportion to the decrease in surface tension caused by the surfactant. Eventually, a new capillary fringe height was established. The height of the depressed capillary fringe was proportional to height of the initial capillary fringe multiplied by the relative surface tension of the surfactant solution. The horizontal transport of surfactant in the depressed capillary fringe, driven primarily by the ambient groundwater flow, caused the propagation of a wedge-shaped drying front in the downgradient direction. Comparison of dye transport during the surfactant experiment to dye transport in an experiment without surfactant indicated that because surfactant-induced drainage decreased the storage capacity of the vadose zone, the dye breakthrough time to the water table was more than twice as fast when the contaminant solution contained surfactant. The extensive propagation of the drying front and the effect of vadose zone drainage on contaminant breakthrough time suggest the importance of considering surface tension effects on unsaturated flow and transport in systems containing surface-active organic contaminants or systems, where surfactants are used for remediation of the vadose zone or unconfined aquifers.  相似文献   

5.
Environmental Science and Pollution Research - The Chernobyl Nuclear Power Plant (NPP) catastrophe of 1986 has been a milestone in the use of nuclear power for energy generation. After the...  相似文献   

6.
Street intersections play an important role in determining pollutant concentrations in the urban canopy – vehicle emissions often increase in the vicinity of road intersections, and the complex flow patterns that occur within the intersection determine the pollutant fluxes into adjoining streets and into the atmosphere. Operational models for urban air quality therefore need to take account of the particular characteristics of street intersections. We have performed an experimental and numerical investigation of flow and dispersion mechanisms within an urban intersection, and on the basis of our observations and results, we have developed a new operational model for pollutant exchanges in the intersection, which takes account of the non-uniformity of the pollutant fluxes entering and leaving the intersection. The intersection is created by two streets of square cross-section, crossing orthogonally; concentrations were measured by releasing a neutrally buoyant tracer gas from a line source located in one of the streets. As a general result, the numerical simulations agree well with the measurements made in the wind tunnel experiments, except for the case of ground-level concentrations, where the computed concentrations far from the axis of the line source are significantly lower than the measured values. In the first part of the study we investigate the influence of an intersection on the velocity and concentration fields in the adjoining streets; we show that the immediate influence of the intersection extends within the adjoining streets, to a distance of the order of the characteristic size of the streets. A large recirculating vortex is formed at the entrance to the cross-wind streets, and this determines the exchange of pollutants between the streets and the intersection. For some wind directions the average velocity in the street segment between intersections is the same as that which occurs in an infinitely long street with the same wind, but for other angles the average velocity in the finite-length street is significantly lower. The average concentration along a finite-length street is significantly different from that observed in an infinitely long street. In the second part of the study we investigate how the pollutant fluxes in the incoming streets are redistributed amongst the outgoing streets. An analysis of the mean streamlines shows that the flows remain relatively planar, with little variation over the vertical, and we have exploited this result to develop a simple operational model for the redistribution of pollutant fluxes within the intersection. This model has been further adapted to take account of the influence of fluctuations in wind direction over typical averaging periods. The resulting model is used in the street network model SIRANE.  相似文献   

7.

Background, aim and scope  

The importance of groundwater for human life cannot be overemphasised. Besides fulfilling essential ecological functions, it is a major source of drinking water. However, in the industrial area of Bitterfeld, it is contaminated with a multitude of harmful chemicals, including genotoxicants. Therefore, recently developed methodologies including preparative capillary gas chromatography (pcGC), MOLGEN-MS structure generation and mutagenicity prediction were applied within effect-directed analysis (EDA) to reduce sample complexity and to identify candidate mutagens in the samples. A major focus was put on the added value of these tools compared to conventional EDA combining reversed-phase liquid chromatography (RP-LC) followed by GC/MS analysis and MS library search.  相似文献   

8.
Lake eutrophication at the urban fringe,Seattle region,USA   总被引:2,自引:0,他引:2  
Nutrient pollution and associated eutrophication of freshwaters threaten the ecological integrity and the services provided to humans by lakes. We examined how human residential development influenced the level of lake eutrophication in the Seattle, WA, USA, region. We surveyed 30 lakes and measured 3 indicators of eutrophication: concentrations of chlorophyll-a and phosphorus, and the proportion of algae that are inedible to zooplankton. We classified lakes based on the waste-treatment method for shoreline homes: septic, sewer, and undeveloped lakes. Septic lakes occurred along the urban-rural fringe while sewer lakes occurred near urban centers. Septic lakes were more eutrophic than sewer lakes and undeveloped lakes, as indicated by higher levels of phosphorus and chlorophyll-a. These results suggest that septic systems contribute to the high levels of eutrophication in lakes at the urban-rural fringe. Lakes at the urban-rural fringe represent an opportunity for proactive management of urban expansion to minimize lake eutrophication.  相似文献   

9.
A simple approach for ranking the leaching of pesticides from surface soil is presented and tentatively calibrated with field data from an agricultural area. The approach is based on the calculation of a leaching index indicating the proportion of active ingredient, with respect to the quantity applied, leaching from a soil model in a given time interval (one year). In the selected area, 85 wells tapping an unconfined aquifer were sampled for groundwater pesticide residue analysis, in order to explore the index region between leachers and nonleachers.  相似文献   

10.
Arsenic in groundwater and sediment in the Mekong River delta, Vietnam   总被引:2,自引:0,他引:2  
A study of groundwater and sediment during 2007-2008 in the Mekong River delta in Vietnam (MDVN) revealed that 26%, 74%, and 50% of groundwater samples were above the US EPA drinking water guidelines for As (10 μg/L), Mn (0.05 mg/L), and Fe (0.3 mg/L). The range of As, Fe, and Mn concentrations in the MDVN were <0.1-1351 μg/L, <0.01-38 mg/L, and <0.01−14 mg/L, respectively. Elevated levels of As were found in groundwater at sampling sites close to the Mekong River and in wells less than 60−70 m deep. An inverse relationship was found between As and Mn concentrations in groundwater. Sediment samples from An Giang and Dong Thap had the highest As concentrations (18 mg/kg and 38 mg/kg, respectively). Arsenic sediment occurred mainly in the poorly crystalline Fe oxide phases. Reductive dissolution of the Fe oxide phase is not necessarily the dominant mechanism of As release to groundwater.  相似文献   

11.
Dispersion data is abundant for water flow in the saturated zone but is lacking for airflow in unsaturated soil. However, for remediation processes such as soil vapour extraction, characterization of airflow dispersion is necessary for improved modelling and prediction capabilities. Accordingly, gas-phase tracer experiments were conducted in five soils ranging from uniform sand to clay at air-dried and wetted conditions. The disturbed soils were placed in one-dimensional stainless steel columns, with sulfur hexafluoride used as the inert tracer. The tested interstitial velocities were typical of those present in the vicinity of a soil vapour extraction well, while wetting varied according to the water-holding capacity of the soils. Results gave dispersivities that varied between 0.42 and 2.6 cm, which are typical of values in the literature. In air-dried soils, dispersion was found to increase with the pore size variability of the soil. For wetted soils, particle shape was an important factor at low water contents, while at high water contents, the proportion of macroporous space filled with water was important. The relative importance of diffusion decreased with increasing interstitial velocity and water content and was, in general, found to be minor compared to mechanical mixing across all conditions studied.  相似文献   

12.
Environmental Science and Pollution Research - A total of fifty groundwater samples were collected in the western part of Nizamabad district, Telangana State, India. The results obtained were...  相似文献   

13.
This work presents the conclusions of a speciation study concerning Zn, Cd, Pb and Cu in groundwater from ten wells in the alluvial aquifers of the Guadiamar river, affected by Aznalcollar mine tailing spill (April 1998). The sampling campaign took place in January 2000, almost two years after the mining accident. Four metal fractions were determined: labile metal forms, H+ exchangeable metal forms, strongly inert forms (associated with organic and inorganic matter in solution), and forms associated with suspended matter. Total metal concentration in groundwater followed the trend Cd < Pb < Cu < Zn. The speciation study showed that Zn and Cd were present to a great extent in available forms (labile and H+ exchangeable), while Pb and Cu were found mostly in the less available forms (strongly inert). These results can illustrate the potential value of the speciation tool for the follow-up of spill-induced pollution in the area.  相似文献   

14.
To investigate the vertical profiles of air pollutants in the boundary layer, aircraft and balloon-born measurements and measurements using a cable car as an instrument platform have been performed in different parts of the Alps. This on-line monitoring of atmospheric pollutants requires expensive and sophisticated techniques. In order to control ambient air quality in remote regions, where no infrastructure like power supply is available, simple instruments are required. The objective of this study, which was coordinated and evaluated by the GSF-Forschungszentrum für Umwelt und Gesundheit was first, to investigate the vertical distribution of ozone in different parts of the Alps and secondly, in addition to continuous analyser measurements, to test monitoring by means of two types of passive samplers. The selection of these samplers — one for one week use and another one for two week application — was based on a passive sampler intercomparison done in a preliminary study one year earlier.  相似文献   

15.
伴随着世界各地工业进程的不断加速,地下水有机污染呈现愈加严重的态势.对滹沱河冲积平原390组浅层地下水样品进行测试、分析和研究.结果表明:(1)研究区浅层地下水三氯甲烷检出率高达15.64%;(2)三氯甲烷集中检出区域均位于工业集散地及排污河流沿线;(3)三氯甲烷的检出点分布同研究区包气带岩性特征有较好的一致性;(4)...  相似文献   

16.
Flow and dispersion in an urban cubical cavity are numerically investigated using a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k? turbulence closure model. The urban cubical cavity is surrounded by flank walls that are parallel to the streamwise direction, called end-walls, as well as upstream and downstream walls. A primary vortex and secondary vortices including end-wall vortices are formed in the cavity. Because of the end-wall drag effect, the averaged mean-flow kinetic energy in the cavity is smaller than that in an urban street canyon that is open in the along-canyon direction. A trajectory analysis shows that the end-wall vortices cause fluid particles to move in the spanwise direction, indicating that flow in the cavity is essentially three-dimensional. The iso-surfaces of the Okubo–Weiss criterion capture cavity vortices well. The pollutant concentration is high near the bottom of the upstream side in the case of continuous pollutant emission, whereas it is high near the center of the primary vortex in the case of instantaneous pollutant emission. To get some insight into the degree of pollutant escape from the cavity according to various meteorological factors, extensive numerical experiments with different ambient wind speeds and directions, inflow turbulence intensities, and cavity-bottom heating intensities are performed. For each experiment, we calculate the time constant, which is defined as the time taken for the pollutant concentration to decrease to e?1 of its initial value. The time constant decreases substantially with increasing ambient wind speed, and tends to decrease with increasing inflow turbulence intensity and cavity-bottom heating intensity. The time constant increases as the ambient wind direction becomes oblique. High ambient wind speed is found to be the most crucial factor for ventilating the cavity, thus improving air quality in an urban cubical cavity.  相似文献   

17.
18.
Denitrification walls are a practical approach for decreasing non-point source pollution of surface waters. They are constructed by digging a trench perpendicular to groundwater flow and mixing the aquifer material with organic matter, such as sawdust, which acts as a carbon source to stimulate denitrification. For efficient functioning, walls need to be permeable to groundwater flow. We examined the functioning of a denitrification wall constructed in an aquifer consisting of coarse sands. Wells were monitored for changes in nitrate concentration as groundwater passed through the wall and soil samples were taken to measure microbial parameters inside the wall. Nitrate concentrations upstream of the wall ranged from 21 to 39 g N m(-3), in the wall from 0 to 2 g N m(-3) and downstream from 19 to 44 g N m(-3). An initial groundwater flow investigation using a salt tracer dilution technique showed that the flow through the wall was less than 4% of the flow occurring in the aquifer. Natural gradient tracer tests using bromide and Rhodamine-WT confirmed groundwater bypass under the wall. Hydraulic conductivity of 0.48 m day(-1) was measured inside the wall, whereas the surrounding aquifer had a hydraulic conductivity of 65.4 m day(-1). This indicated that during construction of the wall, hydraulic conductivity of the aquifer had been greatly reduced, so that most of the groundwater flowed under rather than through the wall. Denitrification rates measured in the center of the wall ranged from 0.020 to 0.13 g N m(-3) day(-1), which did not account for the rates of nitrate removal (0.16-0.29 g N m(-3) day(-1)) calculated from monitoring of groundwater nitrate concentrations. This suggested that the rate of denitrification was greater at the upstream face of the wall than in its center where it was limited by low nitrate concentrations. While denitrification walls can be an inexpensive tool for removing nitrate from groundwater, they may not be suitable in aquifers with coarse textured subsoils where simple inexpensive construction techniques result in major decreases in hydraulic conductivity.  相似文献   

19.
Groundwater samples, taken from 73 wells in 10 counties of southeast Michigan in 1997 had arsenic concentrations in the range of 0.5 to 278 microg/L the average being 29 microg/l. About 12% of these wells had arsenic concentrations that exceeded the current USEPA's maximum contaminant level of 50 microg/l. Most (53-98%) of the arsenic detected was arsenite [As(III)] and other observations supported the arsenic species distribution (low redox potential and DO). In shallow groundwater (< 15 m), arsenic concentrations are low likely due to the formation of insoluble ferrosoferric hydroxide complex. In deep groundwater (> 15 m), the concentration of arsenic is possibly controlled by reductive dissolution of arsenic-rich iron hydroxide/oxyhydroxide and dissolution of arsenic sulfide minerals.  相似文献   

20.
Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year− 1) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3, turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L− 1, max. 5.58 mg L− 1), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes.Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号