首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.  相似文献   

2.
Brown, Jeffrey S., Martha Sutula, Chris Stransky, John Rudolph, and Earl Byron, 2010. Sediment Contaminant Chemistry and Toxicity of Freshwater Urban Wetlands in Southern California. Journal of the American Water Resources Association (JAWRA) 46(2):367-384. DOI: 10.1111/j.1752-1688.2009.00407.x Abstract: Wetlands provide many critical functions in urban ecosystems, including habitat for wetland-dependent fauna and enhancement of water quality. Interest in restoring or creating wetlands to enhance these functions is increasing due to the scale and extent of wetland loss and water quality problems associated with urbanization. One of the most pressing questions associated with urban wetland restoration is the extent to which urban wetlands tend to concentrate contaminants, and if so, whether an associated risk to wildlife exists. The goal of this study was to better understand these potential risks, and the associated tradeoffs with using wetlands to treat urban runoff. Sediment toxicity, contaminant chemistry, and macroinvertebrate (MI) community metrics were measured in 21 southern California wetlands that receive urban runoff as their primary water source. MI organisms in 18 of the 21 urban wetlands examined were considered to be at risk due to sediment contaminant concentrations and toxicity. Most of the sites were either toxic to the amphipod Hyalella azteca, exceeded a sediment quality guideline, or both. Sediment chemistry and toxicity identification evaluation studies suggest that pyrethroid pesticides may have been responsible for much of the toxicity documented in this study. The mean Probable Effects Concentration quotient (an index of degree of sediment contamination) was found to negatively correlate with MI diversity in these wetlands suggesting that toxicity was affecting organisms at the base of the food chain in these wetlands.  相似文献   

3.
3 /day (800,000 US gallons) of municipal wastewater and beef processing wastewater. A large nongovernmental organization hastened restoration with a development process that outlined restoration goals and management objectives to satisfy a dual mandate of wastewater treatment and wildlife habitat creation. In 1995, after five years of wastewater additions, the basins had been refilled and the surrounding uplands had been acquired and restored. The Frank Lake Conservation Area currently provides high-quality habitat for a variety of wildlife in a region where many of the native plants and animals species have been lost due to habitat loss and fragmentation. The success of upland and water management strategies is reflected in the increase of target species' abundance and richness: 50 shorebird species, 44 waterfowl species, 15 raptor species, and 28 other new bird species have returned to the marsh since restoration. As well, significant N and P reduction occurs as waters flow through the first basin of the marsh. The management strategies of this project that satisfied a dual mandate serve as a model to guide managers of other large-scale wetland restoration projects.  相似文献   

4.
Summary Past and current uncontrolled dumping, land application and accidental spills of recalcitrant, toxic environmental pollutants such as DDT and polychlorinated biphenyls (PCBs) pose a continued world-wide environmental threat, in particular to aquatic environments. Bioaccumulative contaminants are rapidly absorbed out of water-borne ambient environments and concentrated in the tissues of living aquatic organisms at concentrations that can range from thousands to millions of times greater than levels in the ambient environment. These absorbed levels are high enough to cause dysfunction in the organisms and potential harmful effects to humans. An established technology capable of remediating the low contaminant levels originating in the ambient aquatic environment does not currently exist. This paper proposes the macro-bioremediation process whereby certain fish and other macroscopic aquatic organisms could be used to filter, concentrate and remove bioaccumulative contaminants from polluted aqueous systems. Contaminant removal would involve the harvesting and subsequent restocking of aquatic organisms capable of bioaccumulating high contaminant levels in relatively short time periods. Tissues of harvested organisms could be composted with specialized fungus and bacteria to fully degrade the recalcitrant contaminants. The macro-bioremediation process could be used at numerous geographic locations for the restoration of natural aquatic environments, supplemental wetlands treatment and for waste-water, hazardous waste and sludge treatment augmentation.  相似文献   

5.
ABSTRACT: The Riverine Community Habitat Assessment and Restoration Concept (RCHARC) was developed to integrate habitat enhancement into the stream restoration process. RCHARC assumes that aquatic habitat quality is closely related to hydraulic diversity based upon a “comparison standard” reach approach to stream restoration. A Beta test was performed by applying the RCHARC process to Rapid Creek in Rapid City, South Dakota. Standard and restored stream reaches were selected and data were collected. A comparison of field data and velocity-depth distributions indicated that the restored stream closely replicated the standard reach. The RCHARC methodology has the potential to assess habitat quality for planned comparison reaches and indicate the level of success resulting from restoration.  相似文献   

6.
A detailed evaluation of past wetland restoration projects in San Francisco Bay was undertaken to determine their present status and degree of success. Many of the projects never reached the level of success purported and others have been plagued by serious problems. On the basis of these findings, it is debatable whether any sites in San Francisco Bay can be described as completed, active, or successful restoration projects at present. In spite of these limited accomplishments, wetland creation and restoration have been adopted in the coastal permit process as mitigation to offset environmental damage or loss of habitat. However, because the technology is still largely experimental, there is no guarantee that man-made wetlands will persist as permanent substitutes for sacrificed natural habitats. Existing permit policies should be reanalyzed to insure that they actually succeed in safeguarding diminishing wetlands resources rather than bartering them away for questionable habitat substitutes. Coastal managers must be more specific about project requirements and goals before approval is granted. Continued research on a regional basis is needed to advance marsh establishment techniques into a proven technology. In the meantime, policies encouraging or allowing quid pro quo exchanges of natural wetlands with man-made replacements should proceed with caution. The technology and management policies used at present are many steps ahead of the needed supporting documentation.  相似文献   

7.
Pre-restoration studies typically focus on physical habitat, rather than the food-base that supports aquatic species. However, both food and habitat are necessary to support the species that habitat restoration is frequently aimed at recovering. Here we evaluate if and how the productivity of the food-base that supports fish production is impaired in a dredge-mined floodplain within the Yankee Fork Salmon River (YFSR), Idaho (USA); a site where past restoration has occurred and where more has been proposed to help recover anadromous salmonids. Utilizing an ecosystem approach, we found that the dredged segment had comparable terrestrial leaf and invertebrate inputs, aquatic primary producer biomass, and production of aquatic invertebrates relative to five reference floodplains. Thus, the food-base in the dredged segment did not necessarily appear impaired. On the other hand, we observed that off-channel aquatic habitats were frequently important to productivity in reference floodplains, and the connection of these habitats in the dredged segment via previous restoration increased invertebrate productivity by 58%. However, using a simple bioenergetic model, we estimated that the invertebrate food-base was at least 4× larger than present demand for food by fish in dredged and reference segments. In the context of salmon recovery efforts, this observation questions whether additional food-base productivity provided by further habitat restoration would be warranted in the YFSR. Together, our findings highlight the importance of studies that assess the aquatic food-base, and emphasize the need for more robust ecosystem models that evaluate factors potentially limiting fish populations that are the target of restoration.  相似文献   

8.
ABSTRACT: The environmental effects of flood control channel modifications such as clearing and snagging, straightening, enlargement, and/or paving can be quite severe in some cases. Information review reveals that several environmental features have been incorporated into the design, construction, operation, or maintenance of recent flood control channel projects to avoid adverse environmental impacts and enhance environmental quality. Typically, these features have been proposed by conservation agencies and designed with minimal quantitative analysis. Environmental features for channel projects include selective clearing and snagging techniques, channel designs with nonuniform geometry such as single bank modification and floodways, restoration and enhancement of aquatic habitat, improved techniques for placement of excavated material, and revegetation.  相似文献   

9.
The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.  相似文献   

10.
A Vegetation-Based Method for Ecological Diagnosis of Riverine Wetlands   总被引:2,自引:0,他引:2  
/ The management of riverine wetlands, recognized as a major component of biodiversity in fluvial hydrosystems, is problematic. Preservation or restoration of such ecosystems requires a method to assess the major ecological processes operating in the wetlands, the sustainability of the aquatic stage, and the restoration potential of each riverine wetland. We propose a method of diagnosis based on aquatic macrophytes and helophytes. Plant communities are used because they are easy to survey and provide information about (1) the origin of a water supply (i.e., groundwater, seepage, or surface river water) and its nutrient content, (2) effects of flood disturbances, and (3) terrestrialization processes. The novelty of the method is that, in contrast to available typologies, it is based on the interference of gradients resulting from several processes, which makes it possible to predict wetland sustainability and restoration potential. These predictions result from knowledge of the processes involved in terrestrialization, i.e., the influence of flood disturbances, occurrence of groundwater supplies, trophic degree, and water permanency of the habitat during a yearly cycle. The method is demonstrated on five different river systems.  相似文献   

11.
Coastal wetlands are a valuable resource to North Carolina, USA, representing important habitat for marine organisms and providing flood control areas and buffer zones from marine storms. An analysis of wetland development trends in coastal North Carolina from 1970 to 1984 was conducted using over 3000 files containing 15 years of permitting records. The total amount of coastal wetland area altered due to authorized development under the Coastal Area Management Act (CAMA), the Dredge and Fill Law, and Section 404 of the Federal Water Pollution Control Act is 1740 ha. This represents nearly 2% of the salt marsh wetlands along the coast of North Carolina. The number of permits issued steadily increased during the 1980s; however, the total amount of wetland loss decreased each year. A few large projects in the early 1970s accounted for nearly 70% of all wetland area developed during the 15-year period. Nearly two-thirds of all projects involving wetland destruction involved impacts on high marsh ecosystems. Bulkheads, canals, and filling activities made up 80% of the projects requiring permits; 62% of the permits were issued to private landowners, but this group accounted for only 16% of the losses of wetland area. Utility companies, which accounted for less than 1% of the permits issued, were responsible for 46% of the permitted wetland loss during the 15-year study period. Future studies should address agriculture and forestry practices which are exempt under CAMA laws and therefore their effects on wetland alteration have not been quantified.  相似文献   

12.
/ Tidal marshes have been actively restored in Connecticut for nearly 20 years, but evaluations of these projects are typically based solely on observations of vegetation change. A formerly impounded valley marsh at the Barn Island Wildlife Management Area is a notable exception; previous research at this site has also included assessments of primary productivity, macroinvertebrates, and use by fishes. To determine the effects of marsh restoration on higher trophic levels, we monitored bird use at five sites within the Barn Island complex, including both restoration and reference marshes. Use by summer bird populations within fixed plots was monitored over two years at all sites. Our principal focus was Impoundment One, a previously impounded valley marsh reopened to full tidal exchange in 1982. This restoration site supported a greater abundance of wetland birds than our other sites, indicating that it is at least equivalent to reference marshes within the same system for this ecological function. Moreover, the species richness of birds and their frequency of occurrence at Impoundment One was greater than at 11 other estuarine marshes in southeastern Connecticut surveyed in a related investigation. A second marsh, under restoration for approximately ten years, appears to be developing in a similar fashion. These results complement previous studies on vegetation, macroinvertebrates, and fish use in this system to show that, over time, the reintroduction of tidal flooding can effectively restore important ecological functions to previously impounded tidal marshes.KEY WORDS: Estuarine; Tidal marsh; Wetland birds; Restoration  相似文献   

13.
Habitat equivalency analysis (HEA) was developed as a tool to scale mitigation or restoration when habitat is contaminated by hazardous substances or has been otherwise harmed by anthropogenic activities. Applying HEA involves balancing reductions in habitat quality against gains from restoration actions, and quantifying changes in habitat quality in terms of ecological services. We propose a framework for developing ecological service definitions and measures that incorporate knowledge about the impacts of chemical contaminants on biota. We describe a general model for integrating multiple lines of evidence about the toxicity of hazardous substances to allow mapping of toxicological inputs to ecological service losses. We provide an example of how this framework might be used in a HEA that quantifies ecological services provided by estuarine sediments contaminated with polycyclic aromatic hydrocarbons.  相似文献   

14.
Wetland conservation is a critical environmental management issue. An emerging approach to this issue involves the construction of wetland environments. Because our understanding of wetlands function is incomplete and such projects must be monitored closely because they may have unanticipated impacts on ecological, hydrological, and geomorphological systems. Assessment of project-related impacts on stream channel stability is an important component of riverine wetlands construction and operation because enhanced erosion or deposition associated with unstable rivers can lead to loss of property, reductions in channel capacity, and degradation of water quality, aquatic habitat, and riparian aesthetics. The water/sediment budget concept provides a scientific framework for evaluating the impact of riverine wetlands construction and operation on stream channel stability. This concept is based on the principle of conservation of mass, i.e., the total amount of water and sediment moving through a specific reach of river must be conserved. Long-term measurements of channel sediment storage and other water/sediment budget components provide the basis for distinguishing between project-related impacts and those resulting from other causes. Changes in channel sediment storage that occur as a result of changes in internal inputs of water or sediment signal a project-related impact, whereas those associated with changes in upstream or tributary inputs denote a change in environmental conditions elsewhere in the watershed. A geomorphic assessment program based on the water/sediment budget concept has been implemented at the site of the Des Plaines River Wetlands Demonstration Projection near Chicago, Illinois, USA. Channel sediment storage changed little during the initial construction phase, suggesting that thus far the project has not affected stream channel stability.  相似文献   

15.
Ecological restoration is increasingly becoming a primary component of broader environmental and water resources management programs throughout the world. The New Zealand Department of Conservation implemented Project River Recovery (PRR) in 1991 to restore unique braided gravel-bed river and wetland habitat in the Upper Waitaki Basin in New Zealand’s high country of the South Island, which has been severely impacted by hydroelectric power development. These braided rivers are highly dynamic, diverse, and globally important ecosystems and provide critical habitat to numerous native wading and shore bird species, including several threatened species such as the black stilt. The objective of this study was to review and summarize PRR after more than 10 years of implementation to provide information and transfer knowledge to other nations and restoration programs. Site visits were conducted, discussions were held with key project staff, and project reports and related literature were reviewed. Primary components of the program include pest plant and animal control, wetland construction and enhancement, a significant research and monitoring component, and public awareness. The study found that PRR is an excellent example of an ecological restoration program focusing on conserving and restoring unique habitat for threatened native bird species, but that also includes several secondary objectives. Transfer of knowledge from PRR could benefit ecological restoration programs in other parts of the world, particularly riverine floodplain and braided river restoration. PRR could achieve even greater success with expanded goals, additional resources, and increased integration of science with management, especially broader consideration of hydrologic and geomorphologic effects and restoration opportunities.  相似文献   

16.
The San Francisco Bay Region of the California Regional Water Quality Control Board (SFB CRWQCB) and the San Francisco District of the US Army Corps of Engineers (US ACOE) are looking for an expeditious means to determine whether regulated wetland projects produce ecologically valuable systems and remain in compliance with their permits (i.e. fulfill their legal requirements) until project completion. A study was therefore undertaken in which 20 compensatory wetland mitigation projects in the San Francisco Bay Region were reviewed and assessed for both permit compliance and habitat function, and this was done using a rapid assessment method adapted for this purpose. Thus, in addition to determining compliance and function, a further goal of this study was to test the efficacy of the assessment method, which, if useful, could be applied not only to mitigation projects, but also to restoration projects and natural wetland systems. Survey results suggest that most projects permitted 5 or more years ago are in compliance with their permit conditions and are realizing their intended habitat functions. The larger restoration sites or those situated between existing wetland sites tend to be more successful and offer more benefits to wildlife than the smaller isolated ones. These results are consistent with regulatory experience suggesting that economies of scale could be realized both with (1) large scale regional wetland restoration sites, through which efforts are combined to control invasive species and share costs, and (2) coordinated efforts by regulatory agencies to track project information and to monitor the increasing number and size of mitigation and restoration sites. In regard to the assessment methods, we find that their value lies in providing a consistent protocol for evaluations, but that the ultimate assessment will rely heavily on professional judgment, regulatory experience, and the garnering of pre-assessment information.  相似文献   

17.
A comprehensive Dredged Material Management Plan (DMMP) has been developed by the US Army Corps of Engineers, New York District (USACE-NYD) and the Port Authority of New York and New Jersey (PANY/NJ). The primary objective of the DMMP is to identify cost-effective and environmentally acceptable alternatives for the placement of dredged material derived from ongoing and proposed navigation improvements within the PANY/NJ. A significant portion of this dredged material is classified as unsuitable for open-ocean disposal. One suite of alternatives presented within the DMMP is the beneficial use of dredged material for habitat creation, enhancement, and restoration within the NY/NJ Harbor Estuary. Proposed beneficial use/habitat development projects include the use of dredged material for construction of artificial reefs, oyster reef restoration, intertidal wetland and mudflat creation, bathymetric recontouring, filling dead-end canals/basins, creation of bird/wildlife islands, and landfill/brownfields reclamation. Preliminary screening of the proposed beneficial use alternatives identified advantages, disadvantages, potential volumes, and estimated costs associated with each project type. Continued study of the proposed beneficial use alternatives has identified areas of environmental research or technology development where further investigation is warranted.  相似文献   

18.
Instream barriers, such as dams, culverts, and diversions, alter hydrologic processes and aquatic habitat. Removing uneconomical and aging instream barriers is increasingly used for river restoration. Historically, selection of barrier removal projects used score‐and‐rank techniques, ignoring cumulative change and the spatial structure of stream networks. Likewise, most water supply models prioritize either human water uses or aquatic habitat, failing to incorporate both human and environmental water use benefits. Here, a dual‐objective optimization model identifies barriers to remove that maximize connected aquatic habitat and minimize water scarcity. Aquatic habitat is measured using monthly average streamflow, temperature, channel gradient, and geomorphic condition as indicators of aquatic habitat suitability. Water scarcity costs are minimized using economic penalty functions while a budget constraint specifies the money available to remove barriers. We demonstrate the approach using a case study in Utah's Weber Basin to prioritize removal of instream barriers for Bonneville cutthroat trout, while maintaining human water uses. Removing 54 instream barriers reconnects about 160 km of quality‐weighted habitat and costs approximately US$10 M. After this point, the cost‐effectiveness of removing barriers to connect river habitat decreases. The modeling approach expands barrier removal optimization methods by explicitly including both economic and environmental water uses.  相似文献   

19.
Contaminated sediments are receiving increasing recognition around the world, leading to the development of various sediment quality indicators for assessment, management, remediation, and restoration efforts. Sediment chemistry represents an important indicator of ecosystem health, with the concentrations of contaminants of potential concern (COPCs) providing measurable characteristics for this indicator. The St. Louis River Area of Concern (AOC), located in the western arm of Lake Superior, provides a case study for how numerical sediment quality targets (SQTs) for the protection of sediment-dwelling organisms can be used to support the interpretation of sediment chemistry data. Two types of SQTs have been established for 33 COPCs in the St. Louis River AOC. The Level I SQTs define the concentrations of contaminants below which sediment toxicity is unlikely to occur, whereas the Level II SQTs represent the concentrations that, if exceeded, are likely to be associated with sediment toxicity. The numerical SQTs provide useful tools for making sediment management decisions, especially when considered as part of a weight-of-evidence approach that includes other sediment quality indicators, such as sediment contaminant chemistry and geochemical characteristics, sediment toxicity, and benthic macroinvertebrate community structure. The recommended applications of using the numerical SQTs in the St. Louis River AOC include: designing monitoring programs, interpreting sediment chemistry data, conducting ecological risk assessments, and developing site-specific sediment quality remediation targets for small, simple sites where adverse biological effects are likely. Other jurisdictions may benefit from using these recommended applications in their own sediment quality programs.  相似文献   

20.
Riparian ecosystems are designated for special protection from development and disturbance at Lake Tahoe. The Tahoe Regional Planning Agency (TRPA) required protection of Stream Environment Zones (SEZs) in its Regional Plan for the Lake Tahoe Basin in 1987. These zones are identified by the presence of key indicators such as the evidence of surface water flow, riparian vegetation, near‐surface ground water, designated floodplain, and alluvial soils. They are mapped on each potential building site and assigned a setback that is also off limits to building construction. The SEZs are protected to maintain their functions and values, including flood attenuation, water quality enhancement, and wildlife habitat. Strict regulations control use or disturbance of SEZs on public and private property throughout the watershed. The TRPA has set restoration targets to increase the acreage of naturally functioning SEZs in the Tahoe Basin. Many SEZ restoration projects have been designed and implemented, but SEZ restoration targets have not been met. More SEZ restoration projects are being designed and funded each year. Restoration designers would benefit from increased effectiveness monitoring of completed projects and Web‐based dissemination of monitoring results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号