首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption and desorption of cadmium by goethite pretreated with phosphate   总被引:8,自引:0,他引:8  
Wang K  Xing B 《Chemosphere》2002,48(7):665-670
The adsorption of Cd by oxides or soils have been extensively studied, however, the desorption has received relatively limited attention, especially in the presence of phosphate. In this study, a batch equilibration method was used to investigate Cd sorption and desorption by goethite pretreated with phosphate. Phosphate not only enhanced Cd adsorption, but also accelerated the adsorption process. Compared with Cd adsorption by goethite alone, phosphate substantially moved the adsorption curves (edges) to lower pH range, indicative of enhancement of Cd sorption. The Cd adsorption by the pretreated goethite reached apparent equilibrium within 24 h at 20 degrees C, while such equilibrium was not observed after 4 weeks in the absence of phosphate. Cadmium was more readily released from phosphate-treated goethite. It is believed that phosphate blocked the pores on goethite surface, which lead to the fast adsorption kinetics and high extraction percentage. These results provided strong support for the diffusion of Cd into goethite particles.  相似文献   

2.
研究了CuCl2在荷结构负电荷皂土上的吸附性能,考察了pH、无机以及有机添加剂等因素的影响,并结合IR和XRD实验结果探讨了吸附机理。研究表明,皂土对CuCl2有很强的吸附能力,其吸附动力学和吸附等温线分别符合准二级速率方程和Langmuir方程。初始pH增大,吸附量增加。无机以及有机添加剂均能能明显抑制吸附。Cu2+在皂土上的吸附层在微观上可分为因化学键合作用而形成的内络合层和因静电作用而形成的外络合层。  相似文献   

3.
皂土对CuCl2的吸附性能   总被引:1,自引:0,他引:1  
研究了CuCl2在荷结构负电荷皂土上的吸附性能,考察了pH、无机以及有机添加剂等因素的影响,并结合IR和XRD实验结果探讨了吸附机理。研究表明,皂土对CuCl2有很强的吸附能力,其吸附动力学和吸附等温线分别符合准二级速率方程和Langmuir方程。初始pH增大,吸附量增加。无机以及有机添加剂均能能明显抑制吸附。Cu2+在皂土上的吸附层在微观上可分为因化学键合作用而形成的内络合层和因静电作用而形成的外络合层。  相似文献   

4.
Adsorption of phosphate from aqueous solution onto alunite   总被引:19,自引:0,他引:19  
Ozacar M 《Chemosphere》2003,51(4):321-327
The phosphate removal potential of alunite, a low cost and abundantly available material, has been investigated. The effects of calcination temperature and time of alunite, adsorbent particle size, pH and initial phosphate concentration on the phosphate adsorption by the calcined alunite have been studied. Phosphate removal was seen to increase with increasing calcination temperature, decreasing adsorbent particle size and pH. Adsorption of phosphate followed first-order rate kinetics. Langmuir and Freundlich adsorption isotherm constants and correlation coefficients were calculated and compared. It was concluded that the adsorption data of phosphate onto calcined alunite fitted to the Langmuir model more than Freundlich model. Specific surface areas of the calcined alunite were calculated at different calcination temperatures and particle sizes.  相似文献   

5.
Adsorption of cadmium (Cd) and phosphate by oxides or soils has been extensively studied, but the adsorption/desorption kinetics and mutual effects of these two species in co-existing systems has received little attention. In this study, a batch equilibration method was used to investigate the effect of phosphate and its application time on Cd adsorption and desorption on goethite. The influence of Cd and its application time on phosphate sorption and desorption kinetics was also determined. For Cd adsorption, phosphate was introduced into the system by two sequences: pre-treating goethite at 40 (degrees)C for 1 week, and applying with Cd simultaneously. Similarly, for phosphate sorption, Cd was applied by pre-treating goethite at 40 (degrees)C for 1 week or simultaneous addition with phosphate. Results demonstrated that phosphate added to goethite enhanced Cd adsorption, and facilitated Cd release as compared to untreated goethite. Cadmium had slightly higher adsorption, but a significantly faster desorption rate from the goethite simultaneously treated with phosphate and Cd, as compared to phosphate-pretreated goethite. Cadmium and its application time had little impact on phosphate sorption by goethite. However, phosphate desorption kinetics was affected by Cd application time. When the sorption time was short (15 min), phosphate desorption was faster from the goethite that was simultaneously treated with phosphate and Cd, as compared to Cd pretreated or untreated goethite. In contrast, a longer sorption time (4 weeks) resulted in a higher desorption rate of phosphate from Cd pretreated goethite than simultaneously phosphate-Cd treated goethite. This study provided useful information on adsorption/desorption kinetics in complicated Cd-phosphate-goethite systems.  相似文献   

6.
4A沸石对复合污染水体中Pb2+、Cu2+和Cd2+的去除   总被引:2,自引:2,他引:0  
采用静态吸附法以4A沸石为吸附剂研究其对复合污染水体中Pb2+、Cu2+和Cd2+的竞争吸附特性,并探讨了影响吸附的环境因素。实验表明,在室温条件下,溶液pH5~6,4A沸石15 mg对10 mL复合污染溶液(Pb2+、Cu2+和Cd2+浓度分别为100 mg/L)吸附20 min时,对溶液中3种重金属的吸附去除率均可达99.8%以上。反应过程中4A沸石对3种重金属的吸附速率大小为Pb2+>Cu2+>Cd2+。复合污染水体中4A沸石对Pb2+、Cu2+和Cd2+的吸附符合Langmuir和Fre-undlich等温吸附方程,相关系数分别为0.9981、0.9901、0.9916和0.9638、0.9194、0.9689。经计算,4A沸石对Pb2+、Cu2+和Cd2+的饱和吸附量分别为129.9 mg/g、107.5 mg/g和99.0 mg/g。4A沸石吸附重金属离子达到吸附平衡的时间较短,对溶液pH值的适应性较好。吸附后的4A沸石可以再生利用,对铅离子洗脱重复利用性较铜离子和镉离子强。  相似文献   

7.
Wang J  Ban H  Teng X  Wang H  Ladwig K 《Chemosphere》2006,64(11):1892-1898
Many coal-fired power plants are implementing ammonia-based technologies to reduce NO(x) emissions. Excess ammonia in the flue gas often deposits on the coal fly ash. Ammonia can form complexes with many heavy metals and change the leaching characteristics of these metals. This research tends to develop a fundamental understanding of the ammonia impact on the leaching of some heavy metals, exemplified by Cu(II) and Cd(II), under different pH conditions. Batch results indicated that the adsorption is the main mechanism controlling Cu(II) and Cd(II) leaching, and high concentrations of ammonia (>5,000 mg/l) can increase the release of Cu(II) and Cd(II) in the alkaline pH range. Based on the chemical reactions among fly ash, ammonia, and heavy metal ion, a mathematical model was developed to quantify effects of pH and ammonia on metal adsorption. The adsorption constants (logK) of Cu(2+), Cu(OH)(+), Cu(OH)(2), and Cu(NH(3))(m)(2+) for the fly ash under investigation were respectively 6.0, 7.7, 9.6, and 2.9. For Cd(II), these constants were respectively 4.3, 6.9, 8.8, and 2.6. Metal speciation calculations indicated that the formation of less adsorbable metal-ammonia complexes decreased metal adsorption, therefore enhanced metal leaching.  相似文献   

8.
初始pH值对磷酸盐还原除磷的影响研究   总被引:2,自引:0,他引:2  
以超高盐(盐度7%,以NaCI计)高磷榨菜废水为研究对象,考察了初始pH值对磷酸盐还原进程的影响。实验结果表明,初始pH值对磷酸盐还原除磷效能影响显著。初始pH为8时,磷酸盐还原除磷率达到最高,平均值为65.45%。同时,初始pH值还会影响污泥中活性磷的形成以及基体对磷化氢的吸附。此外,偏碱性有利于磷形态转化,且BD-P(主要是一些可溶性的、还原性强的、带有Fe-P化合物的集合)含量的高低调控着生物膜内间隙水中溶解态可反应性磷(DRP)和可还原水溶态磷(RSP)含量,最终决定着磷酸盐还原进程。随着初始pH值的升高,污泥对磷化氢的吸附能力降低导致污泥中结合态磷化氢(MBP)含量不断减少。  相似文献   

9.
改性多壁碳纳米管对水中Cd2+的去除   总被引:1,自引:0,他引:1  
为了增加多壁碳纳米管(multiwall carbon nanotubers,MWNTs)对水中Cd2+的吸附量,使用混酸对多壁碳纳米管进行氧化处理,采用红外光谱进行结果表征,并探讨了吸附时间、pH值和MWNTs的使用量、Cd2+的浓度及干扰离子对镉离子吸附的影响。结果表明,吸附时间为1.5 h、pH为5.3、吸附效果最佳,随MWNTs量的增加Cd2+去除量增加,共存的阳离子会降低对Cd2+的吸附效果,对Cd2+的吸附符合Longmuir吸附定律。研究同时表明,pH小于2时Cd2+能容易从碳纳米管上解吸。初步探讨了Cd2+吸附机制。  相似文献   

10.
Mechanisms of lead, copper, and zinc retention by phosphate rock   总被引:31,自引:0,他引:31  
The solid-liquid interface reaction between phosphate rock (PR) and metals (Pb, Cu, and Zn) was studied. Phosphate rock has the highest affinity for Pb, followed by Cu and Zn, with sorption capacities of 138, 114, and 83.2 mmol/kg PR, respectively. In the Pb-Cu-Zn ternary system, competitive metal sorption occurred with sorption capacity reduction of 15.2%, 48.3%, and 75.6% for Pb, Cu, and Zn, respectively compared to the mono-metal systems. A fractional factorial design showed the interfering effect in the order of Pb>Cu>Zn. Desorption of Cu and Zn was sensitive to pH change, increasing with pH decline, whereas Pb desorption was decreased with a strongly acidic TCLP extracting solution (pH = 2.93). The greatest stability of Pb retention by PR can be attributed to the formation of insoluble fluoropyromorphite [Pb(10)(PO(4))(6)F(2)], which was primarily responsible for Pb immobilization (up to 78.3%), with less contribution from the surface adsorption or complexation (21.7%), compared to 74.5% for Cu and 95.7% for Zn. Solution pH reduction during metal retention and flow calorimetry analysis both supported the hypothesis of retention of Pb, Cu, and Zn by surface adsorption or complexation. Flow calorimetry indicated that Pb and Cu adsorption onto PR was exothermic, while Zn sorption was endothermic. Our research demonstrated that PR can effectively remove Pb from solutions, even in the presence of other heavy metals (e.g. Cu, Zn).  相似文献   

11.
为了增加多壁碳纳米管(multiwall carbon nanotubers,MWNTs)对水中Cd2+的吸附量,使用混酸对多壁碳纳米管进行氧化处理,采用红外光谱进行结果表征,并探讨了吸附时间、pH值和MWNTs的使用量、Cd2+的浓度及干扰离子对镉离子吸附的影响。结果表明,吸附时间为1.5 h、pH为5.3、吸附效果最佳,随MWNTs量的增加Cd2+去除量增加,共存的阳离子会降低对Cd2+的吸附效果,对Cd2+的吸附符合Longmuir吸附定律。研究同时表明,pH小于2时Cd2+能容易从碳纳米管上解吸。初步探讨了Cd2+吸附机制。  相似文献   

12.
Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat   总被引:15,自引:0,他引:15  
Combined use of batch equilibration adsorption and X-ray absorption spectroscopy (XAS) was employed to study the mechanisms of competitive adsorption of Pb, Cu, and Cd on Danish and Heilongjiang peat in single- and multi-solute systems. The adsorption capacity and initial adsorption rate on the same peat in single-solute systems followed the order Pb>Cu>Cd. Both the adsorbed amount of each metal (q'm) and its initial adsorption rate were decreased in multi-solute systems. It was observed that the adsorbed amounts of metals at low-energy adsorption sites (qm,1) decreased pronouncedly compared to those at high-energy adsorption sites (qm,2), indicating that the competitive adsorption of Pb, Cu and Cd occurred mainly at the low-energy adsorption sites. XAS study revealed that both Pb and Cu were coordinated in peat predominantly to carboxylic moieties without excluding the hydroxyl groups, thereby providing an insight into the mechanism of competitive adsorption of Pb and Cu on peat.  相似文献   

13.
以胺化木质素作吸附剂对水中Cu2+、Cd2+的去除进行了研究,主要考察了吸附时间、溶液pH值、温度和金属离子初始浓度对吸附去除率的影响,并研究了其吸附等温线和动力学。结果表明,胺化木质素能有效去除水溶液中的Cu2+、Cd2+,且对Cd2+的吸附能力大于Cu2+吸附动力学符合准二级动力学方程,吸附等温线均可以很好地用Langmuir方程描述。  相似文献   

14.
Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent   总被引:13,自引:0,他引:13  
Phosphate removal is important to control eutrophication and an ion exchange process is one of several treatment processes for this purpose. Hydrotalcite compounds (HTALs) are useful as adsorbents for phosphate removal because of their ion exchange properties. In this study, the adsorption properties of a granular synthetic HTAL for phosphate and the method of regeneration of the granular HTAL were examined. The adsorption isotherm of the granular HTAL was approximated by a modified Langmuir type, and the maximum adsorption capacity was 47.3 mg P g(-1), which corresponded to the content of HTAL in the granular one. Phosphate adsorbed on the HTAL was effectively desorbed with alkaline NaCl solutions and the HTAL was regenerated with 25 w/v% MgCl(2) solution. The regenerated HTAL could be reused repeatedly for the phosphate removal. Phosphate in the exhausted desorption solution was recovered as a precipitate of calcium phosphate by addition of CaCl(2), and the residual exhausted desorption solution could be also reused after supplying NaOH. The results suggest the possibility of an effective system for phosphate removal and recovery, which includes the following processes: adsorption, desorption, recovery of phosphate, and regeneration of the HTAL and the desorption solution.  相似文献   

15.
Boron (B) is an essential element for plants and animals growth that interacts with mineral surfaces regulating its bioavailability and mobility in soils, sediments, and natural ecosystems. The interaction with mineral surfaces is quite important because of a narrow range between boron deficiency and toxicity limits. In this study, the interaction of boric acid with goethite (α-FeOOH) was measured in NaNO3 background solution as a function of pH, ionic strength, goethite and boron concentration representing as adsorption edges and isotherms. Boron adsorption edges showed a bell-shaped pattern with maximum adsorption around pH 8.50, whereas adsorption isotherms were rather linear. The adsorption data were successfully described with the CD-MUSIC model in combination with the Extended Stern (ES) model. The charge distribution (CD) of inner-sphere boron surface complexes was calculated from the geometry optimized with molecular orbital calculations applying density functional theory (MO/DFT). The CD modeling suggested dominant binding of boric acid as a trigonal inner-sphere complex with minor contributions of a tetrahedral inner-sphere complex (at high pH) and a trigonal outer-sphere complex (at low pH). The interpretation with the CD model is consistent with the spectroscopic observations.  相似文献   

16.
The purpose of this study is to compare the relative contribution of different mechanisms to the enhanced adsorption of Cu(II), Pb(II) and Cd(II) by variable charge soils due to incorporation of biochars derived from crop straws. The biochars were prepared from the straws of canola and peanut using an oxygen-limited pyrolysis method at 350 °C. The effect of biochars on adsorption and desorption of Cu(II), Pb(II) and Cd(II) by and from three variable charge soils from southern China was investigated with batch experiments. Based on the desorption of pre-adsorbed heavy metals, the electrostatic and non-electrostatic adsorptions were separated. EDTA was used to replace the heavy metals complexed with biochars and to evaluate the complexing ability of the biochars with the metals. The incorporation of biochars increased the adsorption of Cu(II), Pb(II) and Cd(II) by the soil; peanut straw char induced a greater increase in the adsorption of the three metals. The increased percentage of Cd(II) adsorption induced by biochars was much greater than that for the adsorption of Cu(II) and Pb(II). Cu(II) adsorption on three variable charge soils was enhanced by the two biochars mainly through a non-electrostatic mechanism, while both electrostatic and non-electrostatic mechanisms contributed to the enhanced adsorption of Pb(II) and Cd(II) due to the biochars. Peanut straw char had a greater specific adsorption capacity than canola straw char and thus induced more non-electrostatic adsorption of Cu(II), Pb(II) and Cd(II) by the soils than did the canola straw char. The complexing ability of the biochars with Cu(II) and Pb(II) was much stronger than that with Cd(II) and thus induced more specific adsorption of Cu(II) and Pb(II) by the soils than that of Cd(II). Biochars increased heavy metal adsorption by the variable charge soils through electrostatic and non-electrostatic mechanisms, and the relative contribution of the two mechanisms varied with metals and biochars.  相似文献   

17.
The effects of high inputs of phosphate fertiliser on Cd concentrations were studied in soil solutions extracted from topsoils. Soils were sampled along a transect at distances of 1-100 m away from a fertiliser bin. The transect was sampled four times during 1 year. Soil solutions were analysed for Cd, pH, major cations and anions, and other heavy metals (As, Cr, Cu, Pb). For one of the transect samplings, soil total Cd, Cr, Cu, Pb and P were also measured. Cd speciation in the soil solutions was calculated by the GEO-CHEM-PC computer program. Chemical composition varied substantially along the transect, and also between samplings, indicative of seasonal effects and the influence of a fresh application of superphosphate fertiliser during the year. Application of fertiliser decreased soil solution pH and increased the levels of heavy metals in soil solution. Generally, soil total Cd, Cr, Cu, Pb, and P decreased with increasing distance from the fertiliser bin. Correlations between P and the four heavy metals were: P and Cd (R2 = 0.978), P and Cr (R2 = 0.712), P and Pb (R2 = 0.538), P and Cu (R2 = 0.267). Less than 1% of the total Cd in the soil samples was found in the soil solution. The free metal ion Cd2+ accounted for 55-90% of solution Cd. Of the complexed species of Cd, the chloride and sulphate complexes were usually the most important, even when nitrate and phosphate concentrations were relatively high. The presence of As, Cr, Cu and Pb had no effect on Cd speciation.  相似文献   

18.
以枯草芽孢杆菌(Bacillus subtilis)为生物吸附剂,讨论了其对Cu2+的生物吸附规律,并通过酸碱滴定这一表面分析手段,结合相关软件及傅里叶变换红外光谱(FTIR)分析了菌体表面主要的基团种类及数量.结果表明,枯草芽孢杆菌对Cu2+吸附的最佳条件是:pH为6、吸附时间为24 h,菌悬液用量和Cu2+初始浓度...  相似文献   

19.
Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.  相似文献   

20.
The management of dredged sediments is an important issue in coastal regions where the marine sediments are highly polluted by metals and organic pollutants. In this paper, mineral-based amendments (hematite, zero-valent iron and zeolite) were used to stabilize metallic pollutants (As, Cd, Cu, Mo, Ni, Pb, and Zn) in a contaminated marine sediment sample. Mineral-based amendments were tested at three application rates (5 %, 10 %, and 15 %) in batch experiments in order to select the best amendment to perform column experiments. Batch tests have shown that hematite was the most efficient amendment to stabilize inorganic pollutants (As, Cd, Cu, Mo, Ni, Pb, and Zn) in the studied sediment. Based on batch tests, hematite was used at one application rate equal to 5 % to conduct column experiments. Column tests confirmed that hematite was able to decrease metal concentrations in leachates from stabilized sediment. The stabilization rates were particularly high for Cd (67 %), Mo (80 %), and Pb (90 %). The Microtox solid phase test showed that hematite could decrease significantly the toxicity of stabilized sediment. Based on batch and column experiments, it emerged that hematite could be a suitable adsorbent to stabilize metals in dredged marine sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号