首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来银川市冬季重污染过程频发,为明确银川市冬季PM2.5重污染的特征,分析其主要来源及成因,于2016年12月-2017年1月在银川市选取3个采样点开展PM2.5的样品采集与化学组分分析,利用CMB(化学质量平衡)模型对银川市冬季PM2.5进行来源解析,对比分析了重污染日与非重污染日污染特征的差异.结果表明:①银川市冬季重污染日ρ(PM2.5)[(181±33.6)μg/m3]是非重污染日的2.1倍;重污染日和非重污染日的ρ(NO3-)/ρ(SO42-)均小于1,表明燃煤仍是银川市冬季PM2.5的重要来源.银川市冬季PM2.5中ρ(SOC)为(14.4±7.34)μg/m3,约占ρ(OC)的65.2%.②与非重污染日相比,重污染日人为源无机元素As、Pb、Cd和Zn质量浓度在ρ(PM2.5)中的占比分别升高33.2%、18.4%、9.8%和2.9%,表明银川市冬季重污染主要受人为源贡献影响.③源解析结果表明,燃煤源、机动车尾气源、二次离子源和扬尘源是银川市PM2.5的主要污染源,与非重污染日相比,重污染日机动车尾气源的贡献率明显降低.研究显示,银川市冬季重污染受人为源污染物排放的影响较大,燃煤源是银川市冬季PM2.5的重要来源.   相似文献   

2.
2020年1月宁夏回族自治区典型工业城市石嘴山市出现了长时间、高强度PM2.5污染天气.为揭示多因素综合作用对重污染天气的影响,在分析逐日空气质量指数(AQI)和常规污染物浓度变化特征的基础上,选取重点污染时段(2020年1月1—17日)为研究对象,基于环境空气质量数据、加密自动气象观测数据及NCEP再分析资料,采用统计分析、污染特征雷达图、气流后向轨迹聚类及天气诊断相结合的方法对重污染过程特征和成因进行分析.结果表明:①2020年1月1日、3日石嘴山市重污染天气主要受燃煤、工业(钢铁、焦化)和机动车等高强度污染排放影响,PM2.5主要来自一次源;9日重污染天气PM2.5受二次颗粒物生成影响显著,本地扬尘也有贡献,ρ(PM2.5)和AQI均达峰值,分别为216 μg/m3和266;其他时段重污染天气由污染物累积和混合造成.②乌海市及其周边污染气团跨区域传输是促使石嘴山市出现高强度PM2.5污染天气的另一重要因素,当巴彦淖尔市—乌海市—石嘴山市为一致偏北气流、风速小于2 m/s时,易使乌海市及其周边污染气团向南扩散,石嘴山市ρ(PM2.5)出现短时间爆发增长.③持续高湿静稳气象条件使污染天气长时间维持并加重,当欧亚大陆中高纬度500 hPa盛行纬向弱西风气流、近地面石嘴山市处在蒙古弱高压底部均压场、风向为弱偏北风或偏东风时,易形成持续性PM2.5污染天气;当风速减至0.7 m/s、相对湿度增至78%时,污染加重.研究显示,此次持续PM2.5重污染过程是本地高强度污染排放、二次颗粒物生成、区域传输与不利气象条件等因素综合影响和相互叠加的结果;当出现静稳、高湿等不利气象条件时,应加强对各类污染物排放的管控力度,同时充分利用石嘴山市及其周边加密自动气象观测资料,研判污染发展趋势和传输特征,及时开展与乌海市及其周边地区的大气污染联防联控.   相似文献   

3.
乌鲁木齐市重污染期间PM2.5污染特征与来源解析   总被引:4,自引:0,他引:4  
目前有关我国城市大气重污染期间PM2.5污染特征及其来源的研究较少,为深入了解典型城市大气重污染期间PM2.5的污染特征与来源构成,于2013年1月19—30日在乌鲁木齐市采集PM2.5样品,并依据相关划分标准,确定1月19—28日为重污染天气. 分析了重污染天气下ρ(PM2.5)及主要化学组成(包括水溶性离子、无机元素和碳组分),运用统计学方法研究了重污染期间PM2.5的污染特征,并且采用富集因子法和CMB受体模型解析了PM2.5的来源构成.结果表明:大气重污染期间ρ(PM2.5)严重超标,其中米东区环境保护局采样点的ρ(PM2.5)最高,其次是铁路局、市监测站;PM2.5化学组分以SO42-、TC、Si和NO3-为主,其中二次离子占ρ(PM2.5)的43.1%;城市扬尘、煤烟尘和二次粒子是环境空气中PM2.5的主要污染源类,三者在乌鲁木齐市以及米东区的分担率分别为24.7%、15.6%、38.0%和20.8%、28.0%、36.2%,其中二次硫酸盐的分担率在两地更分别达到28.6%和27.0%.   相似文献   

4.
利用气象与环境监测数据,对沈阳市2015—2018年PM2.5的污染事件、浓度变化特征和污染物相关性进行分析;并利用WRF-Chem模式、HYSPLIT模型,从气象要素、高空环流形势和污染传输特征等方面对沈阳市2018年一次污染天气过程进行分析。结果表明:PM2.5月浓度变化呈冬季>春季>秋季>夏季的“V”形特征,日浓度变化呈“双峰”特征。相关性分析显示,气温(-0.3666)和相对湿度(-0.1158)是影响PM2.5浓度主要的气象因子,PM10(0.9964)和NO2(0.7242)是影响PM2.5浓度的主要污染物。2018年1月26—28日沈阳地区出现了一次持续重污染过程,在重污染开始过程中,高空环流平直,浅槽前暖平流占主导地位,地面为弱高压均压场控制,地面风速以静小风为主,风场辐合,气象条件有利于污染物积聚。在重污染发展的过程中,地面相对湿度增大有利于颗粒物吸湿增长,贴地和高空逆温层厚度较大,污染加剧。在重污染减弱的过程中,逆温层消失,大气层结稳定,垂直扩散条件变好。“静稳”气象条件下本地污染物以及外部传输的积累是导致沈阳市此次重污染过程的主要原因。  相似文献   

5.
该文利用韩国天气图、中国气象局气象要素、PM2.5和PM10质量浓度及NAQPMS模式模拟资料对2021年3月8-17日的一次先PM2.5污染后沙尘传输作用的污染过程对空气质量影响、形成原因及数值模型预报效果进行了初步分析。结果表明:此次污染过程造成北京市空气质量持续10 d超标,污染过程主要经历2个不同的阶段,第一阶段为以PM2.5为首污阶段(8-14日):不利的大气扩散条件叠加区域传输影响,导致北京市持续68 h空气重污染,PM2.5峰值浓度达到264μg/m3;第二阶段为沙尘影响阶段,前期受上游强沙尘影响而形成的PM10峰值浓度超过7 000μg/m3的严重污染过程,后期在西南风作用下受沙尘回流影响。此次污染过程的成因PM2.5污染时段为静稳、高湿度、偏南风的不利大气扩散条件影响,数值模式结果表明区域传输达到69%;沙尘污染时段随着蒙古气旋的发展引起冷空气南下造成华北地区、华中、华东等...  相似文献   

6.
为探究海陆风环流对沿海城市PM2.5和O3污染的影响特征,基于2016~2020年中国环境监测总站的污染物观测数据和同期气象资料以及ERA5气象再分析数据,分析了海陆风环流特征对天津市区域大气污染物PM2.5和O3浓度变化的影响.结果表明:2016~2020年天津共有海陆风日411d,6~9月出现最为频繁,12月频率最低.海陆风环流的季节特征差异造成了对PM2.5和O3的影响不同,冬季陆风环流会使PM2.5在沿海区域积累,海风环流对沿海地区PM2.5污染有稀释作用.夏季海陆风环流会改变沿海地区O3分布情况,使O3谷值更低且峰值更高,市区点、郊区点和沿海点O3峰值浓度分别高于平均峰值4.1,8.9,16.0μg/m3,海陆风对峰值的影响程度随着站点与海岸线距离的增长逐渐减弱.2016~2020年间共有PM2.5  相似文献   

7.
为了探究边界层气象要素时空分布及其变化对银川市冬季持续污染天气过程污染物质量浓度变化的影响机制,利用2016年12月1日-2017年1月31日逐时空气质量以及地面和逐日定时探空气象观测数据,根据大气污染级别和过程持续时间,选取2016年12月9-21日(简称"1211过程")和2016年12月29日-2017年1月9日(简称"1231过程")为研究对象,采用统计和天气诊断相结合的方法,在分析比较银川市冬季两次典型持续污染过程演变特征及其与地面气象要素关系的基础上,探讨了大气环流、边界层要素变化对银川市冬季典型污染过程的可能影响机制.结果表明:①银川市冬季两次大气污染过程持续阶段,地面均以偏东或偏南风为主,风速较小,相对湿度较大,能见度较低;在污染清除阶段,地面风向转为西北或偏北风,风速较大,相对湿度较小,能见度较高.②当冬季欧亚大陆中纬度区域500 hPa高空盛行纬向气流,850 hPa高度上银川市受反气旋环流和暖温度脊控制,并且有弱暖平流从西南部向北输送时,银川市易出现静稳型持续污染天气.③冬季银川市持续大气污染过程中,ρ(PM2.5)与风速呈负相关(R平均值为-0.326),与相对湿度呈正相关(R平均值为0.688),与能见度呈显著负相关(R平均值为-0.905),与边界层高度呈较显著负相关(R平均值为-0.575).④银川市冬季静稳型持续污染天气主要分为弱西北和平直西风气流型两种,弱西北气流型具有近地面层逆温弱,污染物积累慢,清除快的特征;平直西风气流型具有近地面层逆温强,污染物积累快,清除慢的特征.研究显示,冬季银川市上空500 hPa高度盛行纬向气流,地面主导风向为偏东或偏南风时,随着地面相对湿度增大、近地层风速减小、大气垂直上升运动减弱、边界层高度降低,大气中ρ(PM2.5)将迅速升高,银川市易出现以PM2.5为首要污染物的静稳型持续污染天气.   相似文献   

8.
2022年1月1日至25日,常州市经历了5次区域性PM2.5污染过程,其中3天达中度污染。为力争在污染过程中缩时削峰,常州市采取了不同针对性管控措施。本研究基于1月常州市国控空气站的PM2.5在线观测数据,对重污染天气黄色预警管控期间(1月8-14日)和大气污染过程强化削峰管控期间(1月15-25日)PM2.5浓度的变化特征进行了分析,评估了不同管控措施对常州市环境空气中PM2.5浓度改善效果的影响。结果表明,强化管控前常州市PM2.5浓度在苏南五市偏高突出,较非污染过程差距明显拉大,污染过程中PM2.5浓度最高达135μg/m3,较其他苏南城市均值偏高13.4%,非污染过程中PM2.5浓度平均为50.0μg/m3,较其他苏南城市均值偏高12.6%;16日推进强化管控后削峰管控效果在黄色预警管控基础上有所加强,常州市PM2.5浓度与其他苏南城市差距较前期有所缩小,污染过...  相似文献   

9.
北京冬季一次重污染过程的污染特征及成因分析   总被引:9,自引:0,他引:9  
为了研究北京冬季重污染过程的污染特征及形成原因,选取2013年1月9~15日一次典型重污染过程,对污染期间气象要素、大气颗粒物组分特征和天气背景场进行综合研究.结果表明,此次大气重污染过程中PM10和PM2.5平均质量浓度分别为347.7μg/m3和222.4μg/m3,均超过环境空气质量标准(GB3095-2012)中规定的日均二级浓度限值.重污染时段PM2.5中NH4+、NO3-和SO42-质量浓度之和占PM2.5质量浓度的44.0%,OC/EC的平均比值为5.44,说明二次无机离子和有机物对此次污染过程中PM2.5贡献较大.稳定的大气环流背景场、高湿度低风速的地面气象条件和低而厚的逆温层导致北京地区大气层结稳定,加上北京三面环山的特殊地形结构,是造成此次大气重污染过程的主要原因.  相似文献   

10.
宝鸡市冬季一次持续性重污染过程特征分析   总被引:3,自引:0,他引:3       下载免费PDF全文
污染气象成因和污染物区域传输作用对本地污染影响较大,研究不同地区污染气象成因和污染物区域传输作用对本地污染的治理有重要意义.利用污染物浓度监测和气象要素观测资料,采用统计学分析方法、特征雷达图和HYSPLIT-4后向轨迹模型分析宝鸡市2018年12月29日—2019年1月8日一次持续性重污染过程的气象成因和污染特征.结果表明:①此次重度污染持续时间长、强度大,污染过程中有6 d空气质量指数(AQI)达到重度及以上污染(AQI>200),ρ(PM2.5)平均值达205.4 μg/m3,有2 d达到严重污染(AQI>300).②气象条件对污染物浓度的影响显著,高低空环流形势形成稳定层结,容易造成污染物累积.东南大风将污染气团远距离输送到宝鸡市,西北静小风使得污染物在本地聚集加重污染.③重污染维持阶段,ρ(PM2.5)/ρ(PM10)在0.9左右,说明此次污染过程PM2.5占比较大,污染物的二次转化作用明显;ρ(NO2)/ρ(SO2)为6.2,表征移动源贡献率高于固定源;ρ(CO)/ρ(SO2)呈先增后减的变化特征,表明静稳天气持续,本地源排放对重污染的贡献逐渐凸显.④特征雷达图结果表明,此次重污染过程的污染类型由发展阶段的污染特征不明显和燃煤型污染特征,逐渐转化为偏二次污染类型,重污染过程结束后污染类型以偏扬尘型为主.研究显示,气象条件和传输扩散对宝鸡市重污染影响显著,宝鸡市重污染应急需优先管控移动源,汾渭平原应加强区域联动,共同治理环境污染问题.   相似文献   

11.
我国北方秋冬季节的空气重污染过程已经成为影响人们生活的重大环境事件,不仅受到公众和科研工作者的广泛关注,也已成为各地各部门政策制订者最为重视的关键问题之一.针对众说纷纭的空气重污染过程的形成机理、治理方案、控制对策等,利用2013-2016年秋季(9-11月)中国环境监测总站公布的逐时空气质量监测数据,重点对北京奥体中心站的空气重污染过程的演变进行了分析.结合中国气象局发布的天气形势分析图,系统地分析了我国4 a来秋冬季节出现大范围空气重污染过程的气候背景.结果表明:秋季我国东北和华北地区出现持续时间长、影响范围广的空气重污染过程,除了排放源的影响之外,天气形势同样起着重要作用. 2013-2016年秋季北京奥体中心的PM2.5污染状况仍以优良天气为主,其间中度及以上污染的持续时间虽然不长,但其影响[高ρ(PM2.5)]也不容忽视.秋季北京奥体中心ρ(PM2.5)日均值超标(二级)日数占25.8%,其中2014年最为严重,超标日数达44 d,占37.4%.通过对空气重污染过程与我国传统节气的对比分析发现,入秋后我国北方首次出现持续48 h以上的空气重污染过程分别是在秋分和寒露两个节气,而最严重的空气重污染过程则出现在寒露和霜降两个节气.从时间序列来看,4 a来北京奥体中心ρ(PM2.5)没有特别显著的改善,优良时数占60%左右,而中度以上的污染时数则维持在25%左右,但严重污染事件[ρ(PM2.5)≥ 250 μg/m3]的有效时数则有明显的变化.此外,白天污染物的浓度明显低于夜晚.研究还发现,西伯利亚高压指数的异常偏低往往会导致持续时间长、影响范围广和污染强度强的重度污染事件.   相似文献   

12.
为了分析京津冀地区2015年11月27日~12月1日和12月19日~25日这2次重污染过程,从环流形势、大气稳定度条件、动力条件、水汽条件、近地层风场输送等几个方面对重污染天气的形成机制展开分析,结果表明:这2次重污染天气过程均属于静稳型,津京冀各地重度以上污染时长均超过50%.在大范围静稳形势存在时,过程一期间边界层内的垂直扩散条件较过程二偏弱,过程一期间地面辐合线位置偏北且维持不动,过程二期间辐合线位置偏南且略微南北摆动,导致了2次过程重污染区域和污染增长速率的不同.对北京而言,过程一前期降雪融化提供了有利水汽条件,弱偏南风有利于污染物和水汽的输送,混合层高度持续异常偏低(京津冀平均混合层高度339m)、过程期间伴随弱下沉运动(0~2Pa/s)、多层逆温(且厚度大)造成日变化不明显,地面辐合线在北京中部维持等多重因素,使得污染浓度极高,北京地区PM2.5峰值浓度达593mg/m3.过程二前期采取了减排措施,能见度和PM2.5日变化大、污染发展较过程一前期平缓;后期不利气象条件叠加污染排放,导致了PM2.5爆发式增长,其中邢台PM2.5峰值浓度达70mg/m3,增长率超过7.2mg/(m3·h).  相似文献   

13.
长三角地区PM2.5区域性污染时空变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为定量分析长三角地区PM2.5区域性污染的变化特征,建立适用于长三角地区的PM2.5区域污染划分标准,基于2015—2020年长三角地区41个城市日均ρ(PM2.5)开展区域污染变化趋势研究,并针对长三角PM2.5重度区域污染开展了时空变化以及网络特征分析. 结果表明:①2015—2020年长三角三省一市年均ρ(PM2.5)降幅均在25%以上,城市ρ(PM2.5)分布呈北高南低的特征,南北城市之间ρ(PM2.5)差异较大,ρ(PM2.5)最高值与最低值相差35~46 μg/m3. ②2015—2020年长三角PM2.5区域污染天数比例为16.9%~35.9%,以轻度污染为主,不同年份中度和重度污染天数比例差异较大,且主要出现在秋冬季,轻度、中度和重度污染天数均呈波动下降趋势. ③与2015年相比,2019年和2020年PM2.5区域污染天数分别减少了38和69 d,且PM2.5重度区域污染持续天数和重度及以上污染城市数量均呈减少趋势. ④PM2.5重度区域污染日,长三角城市之间表现出较强的污染关联性,并可划分为4个子群. 以连云港市为代表的子群1位于长三角地区北部,PM2.5污染相对较重,受长三角区域内输送影响较小,但对区域内其他城市有一定的输送影响;以宁波市为代表的子群2和以南京市为代表的子群4受长三角区域内输送影响较大,并指示了东路沿海和中路两条污染传输通道;以安庆市为代表的子群3位于内陆地区,污染独立性相对较强,受长三角区域内输送影响较小,同时对长三角其他城市影响也较小. 研究显示,长三角地区PM2.5污染改善显著,但重度区域污染尚未消除,中北部城市的联防联控将对改善PM2.5区域污染起积极作用.   相似文献   

14.
天津市多发生以PM2.5为首要污染物的重污染事件,明确ρ(PM2.5)时空分布特征及重污染过程来源对PM2.5的综合治理意义深远.利用天津市2014-2017年环境资料和2016年气象资料,结合WRF-Chem模式研究了天津市ρ(PM2.5)时空分布特征及重污染过程来源.结果表明:①自2014年以来,天津市ρ(PM2.5)呈逐年下降趋势.②ρ(PM2.5)月变化曲线呈"U"型分布,呈冬春季高、夏秋季低的季节性特征;ρ(PM2.5)日变化呈双峰型分布,主峰值出现在08:00-09:00,次峰值出现在21:00-翌日00:00.③各季节天津市ρ(PM2.5)空间分布不同,春季、夏季、秋季和冬季高值中心分别位于天津市西南部的静海区、中心城区北部的北辰区、西部的武清区及北部的蓟州区.④WRF-Chem模式模拟的天津市秋冬季污染物来源结果表明,本地源贡献率为56%,外来源输送贡献率为44%,其中以河北省和山东省的输送为主.2016年12月16-22日天津市一次重污染过程的模拟结果表明,天津市本地源贡献率为49.6%,河北省、北京市和山东省的外来源输送贡献率分别为32.2%、7.0%和2.2%.污染前期,不利气象条件和外来源输送造成天津市ρ(PM2.5)聚集并形成重度污染;污染持续过程中,本地源贡献率逐渐增大并占主导地位.研究显示,近年来天津市ρ(PM2.5)呈下降趋势,并有明显的空间分布特征.   相似文献   

15.
我国自2013年起对重点区域逐步开展重污染天气应对工作,以削减大气重污染峰值、减缓重污染的发生和发展.为更客观地评估重污染天气应急减排措施的效果,基于环境监测数据对应急效果评估开展方法学研究,通过对洛伦兹曲线内涵的拓展,提出污染物高位累积浓度占比的概念,并以PM2.5、PM10、SO2、NO2四种污染物为研究对象,评估重污染天气应急措施减排效果,同时将评估结果与空气质量模型模拟结果进行相互辅证.结果表明:2016年和2017年秋冬季(当年10月1日-翌年3月31日)"2+26"城市PM2.5、PM10、SO2、NO2高位累积浓度占比较2015年同期均有所下降,降幅为0.43%~3.80%;PM2.5、PM10高位累积浓度占比降幅相对SO2、NO2大,其中,2016年和2017年秋冬季PM2.5高位累积浓度占比较2015年同期降幅均为2.23%,PM10高位累积浓度占比较2015年同期降幅分别为1.89%、3.80%.研究显示,应急措施在"2+26"城市范围内对PM2.5、PM10、SO2、NO2起到了较显著的重污染削峰作用,其中,应急措施对PM2.5、PM10等颗粒物重污染削峰效果优于SO2、NO2等气态污染物.   相似文献   

16.
天山北坡是重污染天气消除攻坚战的重点区域,为了解该区域冬季大气重污染期间NH4+污染特征及其对PM2.5浓度的贡献,2020年12月—2021年1月在该区域典型工业城市石河子市城区对气态NH3和PM2.5中水溶性离子的浓度进行了连续监测,分析了不同空气质量等级下PM2.5中NH4+浓度和NH3-NH4+气固转化率的变化以及NH4+的赋存形式.结果表明:(1)监测期间,石河子市大气PM2.5、NH4+和其他阳离子的平均浓度分别为164、25.3和3.60μg/m3,NH4+浓度是其他阳离子总浓度的7.0倍;NH4+浓度在PM...  相似文献   

17.
2018年11月23日-12月4日,京津冀及周边地区"2+26"城市出现了一次长时间、大范围、高强度的复合型大气重污染过程,为揭示区域性重污染过程中多因素的综合作用,利用气象资料、空气质量监测等多源数据以及区域污染特征雷达图,对京津冀及周边地区"2+26"城市此次重污染特征和成因进行分析.结果表明:根据PM2.5/PM10[ρ(PM2.5)/ρ(PM10),下同]可将此次重污染过程划分为4个阶段.第一阶段(2018年11月23-26日)PM2.5/PM10在0.5~1.0内波动,"2+26"城市大气扩散条件转差,一次污染物局地积累及SO2、NOx、NH3等气态污染物在高湿条件下二次转化是污染形成并发展的主要原因;第二阶段(11月27日)PM2.5/PM10突降至0.2左右,"2+26"城市北部受形成于蒙古国的沙尘影响,短时ρ(PM10)快速升高(峰值为818 μg/m3),中南部受形成于内蒙古自治区阿拉善盟的沙尘及上风向PM2.5污染的传输影响,ρ(PM2.5)和ρ(PM10)均较高,维持日均重度污染水平(参照GB 3095-2012《环境空气质量标准》和HJ 633-2012《环境空气质量指数(AQI)技术规定(试行)》);第三阶段(11月28日-12月2日)PM2.5/PM10由0.3逐渐升至0.8,在静稳、高湿的不利气象条件下,一次污染物积累并二次转化,第二阶段残留沙尘中的矿物质对硫酸盐起到催化作用,导致ρ(PM2.5)快速上升,"2+26"城市大部分达日均重度及以上污染;第四阶段(12月3-4日)与第二阶段类似,PM2.5/PM10突降至0.2,"2+26"城市再次受到沙尘天气和区域传输的共同影响,因冷空气持续时间较长,污染被有效清除.研究显示,此次污染过程是气象条件、污染物一次排放和二次转化、区域传输、沙尘天气等多因素综合作用的结果.当静稳、高湿等不利气象条件或沙尘天气出现时,区域应加强对各类污染物排放的管控力度,以降低污染物的一次排放、二次转化以及沙尘和区域传输的共同影响,进而削弱污染严重程度.   相似文献   

18.
为揭示湖北省PM2.5和臭氧(O3)复合污染演变特征,基于湖北省17个地市的空气质量国控点和武汉市大气超级站组分监测数据,全面分析湖北省17个地市2015—2020年PM2.5和O3的时空变化特征及相关关系,探讨PM2.5和O3协同效应的成因机理. 结果表明:①2015—2020年,湖北省PM2.5显著改善,平均降幅为4.7 μg/(m3·a),但冬季负荷仍较高,主要集中于中部地区;O3污染凸显,平均增幅为3.8 μg/(m3·a),污染集中在4—10月的暖季,东部地区最严重,近两年超标天数已与PM2.5相当. ②湖北省PM2.5和O3关联日趋密切,协同效应显著,日评价指标显示夏季二者呈显著正相关(相关系数为0.57),近两年当PM2.5浓度≤50 μg/m3时,相关系数高达0.63;冬季PM2.5浓度与Ox(O3+NO2)浓度呈正相关,尤其2020年东部城市二者相关性高达0.46,显示大气氧化性对PM2.5二次污染的重要性. ③以武汉市为例,归纳PM2.5和O3复合污染的成因,暖季低PM2.5背景下,高温、中等湿度和弱风速的气象条件以及VOCs和NOx等前体物的高浓度排放,使得受VOCs主控的光化学反应加剧,易造成O3污染,从而加强PM2.5二次生成;冬季高的大气氧化性,叠加不利气象条件,促进颗粒物的二次生成,导致重污染时PM2.5组分以硝酸盐等二次无机组分为主. 研究显示,湖北省PM2.5和O3协同控制重点为,在保持现有NOx控制力度基础上强化VOCs控制,遏制暖季和东部区域O3浓度上升,加强冬季和中部PM2.5治理.   相似文献   

19.
为深入了解保定市空气质量状况,揭示PM2.5与臭氧(O3)的变化特征及相互关系,利用小波分析法对保定市2013—2020年每年4—9月AQI、PM2.5、O3-8 h (O3日最大8 h滑动平均值)和NO2浓度的逐日数据进行分析. 结果表明:①2013—2018年保定市O3污染呈逐年加重趋势,最大日浓度达到347 μg/m3;随着治理措施的颁布与实施,PM2.5超标天数由2013年的97 d减至2020年的1 d,PM2.5超标情况逐年改善. ②O3超标天数由2013年的3 d增至2018年的95 d,2020年减至61 d;O3超标天数占PM2.5和O3超标总天数的比例从2013年的3%增至2020年的98%,说明O3逐渐成为影响保定市空气质量的主要污染物. ③2013年保定市O3-8 h浓度低于“2+26”城市均值,2014—2020年O3-8 h浓度高于或接近“2+26”城市均值,说明近年来保定市O3-8 h浓度的升幅已超过“2+26”城市的平均水平. ④小波分析发现,2013—2020年(除2015年和2018年外)AQI与PM2.5污染序列的第1主周期相近,从2017年开始,AQI与O3-8 h污染序列的第1主周期和第2主周期均一致,说明近年来保定市空气污染逐渐由PM2.5污染转为PM2.5与O3复合污染. ⑤在同一时间尺度范围内,PM2.5与O3-8 h污染序列的震荡频率基本一致,说明二者存在较明显的正相关关系;2015—2019年,NO2与O3-8 h污染序列的震荡频率趋于一致,说明保定市O3-8 h浓度受前体物NO2影响较大,2020年震荡频率有较大差异,这可能与新冠肺炎疫情复工后生产规模尚未完全恢复,致使NO2、PM2.5等污染物排放强度同比降低有关. 因此,减少NO2排放,协同控制多污染物是实现保定市空气质量改善的主要途径.   相似文献   

20.
为评估“2+26”城市在疫情期间的减排效果,基于NAQPMS模式和情景模拟的方法,分析了2020年1~3月及疫情前后空气质量特征,对气象、重污染应急减排措施及社会经济活动对空气质量的影响和研究的不确定性进行了分析讨论.结果表明,2020年1~3月,“2+26”城市空气质量级别优良率为59.6%,同比上升10.9%;PM10、PM2.5、SO2、NO2、O3-8h-90per和CO-95per平均浓度分别为108,76,14,36,109μg/m3和2.3mg/m3.疫情期间(1月24日~3月31日) PM10、NO2、PM2.5和CO浓度比疫情前期(1月1~23日)同比降幅明显.气象条件造成沿燕山和太行山城市PM2.5浓度约上升1%~8%.重污染减排促使区域性污染过程减少了2次,“2+26”城市PM2.5季度均值降低约6~26 μg/m3.受春节和疫情综合影响,机动车排放量大幅下降,但焦化、火电等重点行业实际污染排放量变化不大,散煤燃烧对空气质量的负面影响增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号