共查询到20条相似文献,搜索用时 15 毫秒
1.
为了评估生活垃圾运输过程中,发酵垃圾渗滤液中气味浓度的变化.采用控温发酵对含水量不同的渗滤液样本进行处理,并应用仪器测量与人工嗅辨相结合的方法来确定气味浓度.结果表明,仪器测量结果与人工嗅辨值之间存在显著的相关性(r=0.916),从而验证了所采用方法的有效性.进一步地,研究分析了水分含量、温度和发酵时间对气味浓度的具体影响.通过比较随机森林、XGboost和LightGBM等先进机器学习模型的性能,使用MAE、MSE、MAPE等评价指标后,确认随机森林模型在预测气味浓度方面的优越性.这些结果为理解和控制垃圾处理过程中的气味扩散提供了实用的参考,并为机器学习技术在环境科学研究中的应用奠定了基础. 相似文献
2.
本文着重介绍了适合城市空气中氮氧化物预报的五种模型:统计模型中的MOBILE模式、时间序列分析法、投影回归技术和数值预报模型中的高斯模式及箱模式,并在此基础上推荐了组合预报。 相似文献
3.
为了准确预测空气中颗粒物的浓度变化情况,减少空气污染给居民的生产生活带来的危害,该研究提出一种基于 RF-Kmeans-LIBSVM 的大气颗粒物浓度预测模型。首先采用 RF 算法对影响 PM2.5和 PM10 浓度的因子进行重要性评估,选择出影响最大的 2 个因子作为聚类属性,然后采用 Kmeans 算法对空气污染监测数据进行聚类,把 PM2.5 和 PM10序列划分为相似性较高的若干类,最后运用经聚类分析之后的训练样本建立 PM2.5 和 PM10浓度预测模型。以乌鲁木齐市监测点 2015 年 1 月 1 日~2020 年 12 月 31 日的 PM2.5 和 PM10 浓度日均监测数据为例,使用改进方法和传统方法分别进行预测。结果表明:与传统支持向量机相比,改进后的模型的预测准确率明显提升,对于 PM2.5,误差评价指标 MAE 和RMSE 分别下降 33.1% 和 26.5%;对于 ... 相似文献
4.
选取2015~2021年长三角地区4个代表性城市污染物浓度,利用机器学习的气象归一化方法解耦气象因素对污染物的影响,量化气象和排放对污染物浓度变化的贡献.结果表明,长三角地区PM2.5、 NO2和SO2排放下降影响贡献较大(57.2%~68.2%、 80.7%~94.6%和81.6%~96.1%),抵消了气象因素带来的不利影响,致使污染物浓度降低.而气象条件对于臭氧日最大8 h(MDA8_O3)的贡献强于其他污染物(23.5%~42.1%),其中气象因素促进污染物浓度上升(4.7%),排放变化促进污染物浓度下降(-3.2%). NO2和MDA8_O3在2019~2021年降幅更快,主要原因是2019~2021年排放起到较2015~2018年更强的促进污染物浓度降低作用.PM2.5和SO2在2019~2021年的降幅较2015~2021年整体有所减弱.基于机器学习的气象归一化方法可以解耦气象对污染物的影响,量化排放... 相似文献
5.
介绍了石家庄市在大气主要污染物预报统计模式方面的研究,包括统计回归分析的原理,预报选取的因子,主要污染物的回归方程及其相关系数和推广应用情况,通过分析指出了模式存在的不足,并给出了改进方向。 相似文献
6.
7.
在空气质量模拟预报数据基础上,采用套索算法(Lasso)将前馈神经网络(FNN)与基于污染物浓度及气象实时观测值搭建的长短期记忆网络(LSTM)组合,形成了模拟与观测机器学习(SOML)预报模型,开展了佛山市顺德区NO2未来3d10个镇街空气质量监测点位逐日浓度预报.结果显示:SOML3d的准确性均优于WRF-CMAQ及其它单一模型,其中第一天SOML平均绝对误差(MAE)为4.99μg/m3,改进幅度达66.18%;SOML不同季节适用性均较强,四季预报效果均较WRF-CMAQ明显提升(MAE分别降低42.18%、42.89%、61.04%、50.91%),其中秋冬季改善幅度更好;相比WRF-CMAQ,SOML预报结果能较好反映顺德区内各站点NO2浓度实际空间分布和数值水平,有效提升了浓度预报精准度. 相似文献
8.
基于小波分解和SVM的大气污染物浓度预测模型研究 总被引:1,自引:1,他引:1
针对大气污染物浓度的精准预测问题,运用小波分解将污染物浓度一维序列分解为高维信息,结合气象及污染物浓度数据,构建了基于小波分解的支持向量机预测模型.最后将模型应用于长沙市2018年PM2.5和O3-8 h的浓度预测.结果表明:①在其他参数不变的条件下,该模型在平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)、一致性水平(IA)和相关系数(R)指标上均优于未经小波分解的预测模型;②在考虑其他污染物对PM2.5浓度的影响后,预测模型评价指标MAE、MAPE和RMSE分别减少了5.57%、9.91%和3.44%,有着更小的误差;③在考虑气象因素对O3-8 h浓度的影响后,预测模型评价指标MAE、MAPE和RMSE分别减少了1.59%、3.54%和0.82%,同样也有更小的误差.由此可以看出,本文所提模型能够有效预测大气污染物浓度,为相关研究提供了方法参考. 相似文献
9.
10.
11.
基于机器学习方法的太湖叶绿素a定量遥感研究 总被引:1,自引:1,他引:1
为了比较评价人工神经网络和支持向量机2种机器学习算法在水质遥感中的应用能力,本研究首先从基础理论和学习目的入手,对比分析了2种机器学习算法的理论体系;其次,以太湖为例,基于MODIS遥感影像,构建了反演太湖叶绿素a浓度的2种机器学习方法模型,通过对模型的验证、稳定性和鲁棒性分析以及全湖反演结果对比3个方面评价了2种模型的泛化能力.验证结果表明,支持向量机模型对验证样本预测结果的均方差根和平均相对误差分别为5.85和26.5%,而人工神经网络模型的预测结果均方差和平均相对误差则高达13.04和46.8%;稳定性和鲁棒性评价亦说明,以统计学习理论为基础的支持向量机模型具有更加良好的稳定性、鲁棒性,空间泛化能力优于人工神经网络模型;2种机器学习算法对太湖叶绿素a的浓度分布反演结果基本一致,但人工神经网络模型因其学习目标设定和网络构建中的“过学习”等缺陷,造成了对东太湖以及湖心区叶绿素a的反演结果与实际监测结果差异较大. 相似文献
12.
13.
14.
15.
基于BP神经网络的污染物浓度多模式集成预报 总被引:1,自引:0,他引:1
基于中国气象局雾-霾数值预报系统CUACE、北京区域环境气象数值预报系统BREMPS和华东区域大气环境数值预报系统WRF-Chem三个环境气象模式预报产品,利用BP神经网络方法建立多模式集成预报模型.首先通过实验得到BP神经网络的训练函数、隐含层节点数和训练样本长度分别为贝叶斯归一化训练函数trainbr、10和50.随后选取北京、天津和石家庄站点的预报结果检验该模型的预报性能.结果表明:(1)相对于单模式,BP神经网络集成预报的3~72h逐3h污染物浓度和观测之间的归一化平均偏差从-100%~200%降低到-20%~20%,污染物浓度和观测的均方根误差比各单模式降低15%以上,相关系数从0.1~0.8提升到0.3~0.85之间,说明其预报结果优于各单模式.(2)2016年AQI等级评估表明,集成模型预报的北京轻度和中度污染的TS评分分别比CUACE提高22%和10%,在天津重度污染的空报率和漏报率分别降低31%和25%.(3)2016年12月份的重污染过程评估发现,集成模型预报的PM2.5浓度的演变趋势和实况基本相符. 相似文献
16.
17.
应用多种机器学习算法进行时空耦合从而建立一种新的多模式集合预报订正算法(简称“ET-BPNN算法”),对4种常规污染物(NO2、O3、PM2.5和PM10)的空气质量模型预报结果进行订正. 订正方法分为两步,第一步中利用随机森林、极端随机树和梯度提升回归树3种机器学习算法,采用4个空气质量数值预报模式(CMAQ、CAMx、NAQPMS和WRFChem)的多尺度污染物浓度预报数据、中尺度天气模式(WRF)的气象因子预报数据(包括2 m温度、2 m相对湿度、10 m风速、10 m风向、气压和小时累计降水量)以及污染物浓度观测数据作为训练集,训练结果进入基于均方根误差的择优选择器,选取3种机器学习算法中优化效果最好的算法;在第二步中利用了BP神经网络算法,通过加权平均获得集合模式订正预报结果. 结果表明:①与模式集合平均算法相比,ET-BPNN算法使NO2、O3、PM2.5和PM10浓度预报值与观测值之间的均方根误差分别减小了30.4%、18.9%、43.3%和38.1%. ②ET-BPNN算法的优化效果较随机森林、极端随机树和梯度提升回归树3个机器学习算法有明显提升,与极端随机树算法相比,ET-BPNN算法使NO2、O3、PM2.5和PM10浓度预报值与观测值之间的均方根误差分别降低了42.7%、20.1%、19.7%和9.7%. ③在易发生污染的秋冬季,ET-BPNN算法对PM2.5浓度的预报具有明显的优化效果,此外该算法明显缩小了不同站点预报和不同预报时效之间的偏差,具有较好的鲁棒性. ④对O3和PM2.5浓度预报而言,经ET-BPNN算法优化后的预报结果能够更好地把握污染过程,对污染物峰值浓度的预报也较模式集合平均算法更准确. 研究显示,ET-BPNN算法提高了空气质量模式对污染物浓度的预报效果. 相似文献
18.
小波支持向量机在大气污染物浓度预测中的应用 总被引:1,自引:0,他引:1
用小波分解重构和支持向量机相结合的方法,建立大气污染物浓度预测模型。通过小波分解,将大气污染物浓度序列分解为不同频段的小波系数序列,再对各层的小波系数序列重构到原尺度上。利用相关分析的方法构建出低频小波系数a3和中频小波系数d3的支持向量机模型输入因子为前一天小波系数a3和7个气象因子;高频小波系数d2和d1以前三日的小波系数为输入因子,然后对各小波系数序列采用相应的支持向量机模型进行预测,各小波系数均使用ν-支持向量回归机(ν-SVR)算法和径向基函数,最后通过小波重构合成大气污染物浓度序列的最终预测结果。通过对大气SO2浓度预测实例证明,该大气污染物浓度预测模型具有推广能力较强、预测精度较高、训练速度快、便于建模等优点,具有良好的应用前景。 相似文献
19.
小波分析应用于大气污染物浓度的预报 总被引:3,自引:2,他引:3
在分析了国内外大气污染预报模式存在的不足的基础上,提出将小波分析应用于大气污染物时间序列的预报;利用小波分析可以将时间序列通过小波分解一层一层分解到不同的频率通道上,分解后序列的平稳性比原始序列好得多。其小波分解后的序列用时间序列模型来预报,最后再合成得到原时间序列的预报值。 相似文献
20.
空气质量预报对于大气污染防治、打赢蓝天保卫战意义重大.本研究基于重庆市气象局的中尺度天气模式(WRF)和空气质量数值预报模式(CMAQ)的预报产品,采用2018年4个代表月份(1、4、7、10月,分别代表冬、春、夏和秋季)成渝地区22个观测站点的PM2.5浓度和气象要素观测数据,建立基础特征变量数据集(包括训练数据集和测试数据集),通过调整模型参数,并利用训练数据集采用机器学习方法(Lasso回归、随机森林回归、深度学习RNN-LSTM)进行模型训练,订正了成渝地区PM2.5数值预报.其中,通过Lasso回归算法对成渝地区4个区域分别进行变量优选,优化模型,利用测试数据集对模型进行测试并检验评估.结果表明,基于3种机器学习方法订正后的PM2.5小时浓度相比CMAQ模式模拟预报结果,偏差显著降低,相关系数显著提高.其中,随机森林回归和RNN-LSTM的订正效果优于Lasso回归,区域统计与站点统计结果较为一致;Lasso回归订正后的均方根误差减小50%左右,相关系数达70%,随机森林回归和RNN-LSTM订正后的均方根误差减小70%左右,相关系数达90%,随机森林回归与RNN-LSTM订正后的偏差范围相比Lasso回归集中范围更窄,最大概率分布更集中;3种方法对不同季节的订正效果与全年一致,其中,冬季订正效果更为显著.研究结果可为提高我国重点城市群区域—成渝地区PM2.5浓度的大气污染预报能力提供有益参考. 相似文献