首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高远  程军  张亮  彭永臻 《环境工程》2019,37(1):35-40
高氨氮短程硝化厌氧氨氧化一体化(PN/A)工艺的稳定性受亚硝态氮影响显著。考察了高氨氮PN/A工艺受亚硝态氮短期抑制后,系统脱氮性能快速恢复的策略。稳定运行的PN/A污泥在ρ(NO~-_2-N)=200 mg/L条件下抑制2 h后,首先考察厌氧氨氧化菌在不同初始亚硝态氮浓度下的活性变化。此外,考察了受抑制后的PN/A工艺在不同DO浓度(0.05~1 mg/L)下的脱氮性能,结果表明:当NO~-_2-N浓度降低至50 mg/L以下时,厌氧氨氧化菌才明显表现出活性;受抑制后的PN/A工艺中,厌氧氨氧化菌对DO敏感度增加,恢复时系统的DO宜低于正常运行时浓度。综上所述,受NO~-_2-N抑制的PN/A工艺要恢复脱氮性能,宜降低亚硝态氮浓度同时控制DO浓度。在连续运行的PN/A反应器(200 L),诱发NO~-_2-N浓度提高到160 mg/L时,TN去除负荷从0.57下降至0.2 kg/(m~3·d)。通过合理控制DO和NO~-_2-N浓度,系统负荷在30 d内即可恢复至原有水平,验证了以上恢复策略的可行性。  相似文献   

2.
磷酸盐对厌氧氨氧化活性污泥脱氮效能的影响   总被引:1,自引:0,他引:1  
周正  刘凯  王凡  林兴  李祥  黄勇  顾澄伟 《环境科学》2017,38(6):2453-2460
通过接种厌氧氨氧化污泥,研究了磷酸盐浓度变化对厌氧氨氧化活性污泥脱氮效能长短期的影响,对其抑制动力学参数进行拟合,并基于荧光定量PCR的测定,分析了受磷酸盐抑制前后反应器中厌氧氨氧化细菌丰度的变化.短期研究结果表明,磷酸盐浓度小于30 mg·L~(-1)对厌氧氨氧化污泥的脱氮效能没有明显的影响;随着进水磷酸盐浓度的升高,氮去除速率呈加速下降趋势;磷酸盐浓度大于200 mg·L~(-1)时,厌氧氨氧化污泥活性达到完全的抑制状态;采用Haldane抑制模型拟合磷酸盐抑制的动力学参数,所得半抑制常数为70.1 mg·L~(-1).长期研究结果表明,磷酸盐浓度小于50 mg·L~(-1)时,对厌氧氨氧化污泥脱氮效能的影响不大;磷酸盐浓度在70~90 mg·L~(-1)时,厌氧氨氧化污泥活性开始受到明显影响,经过一段时间可以有所恢复,但磷酸盐浓度越高,恢复所需时间越长;当磷酸盐浓度达到100 mg·L~(-1)时厌氧氨氧化污泥的脱氮效能受到严重抑制,氮去除速率由158.33 g·(m~3·d)~(-1)下降至60.17 g·(m~3·d)~(-1)左右,抑制约62%.荧光定量PCR结果表明,抑制后的污泥体系中ANAMMOX菌细胞浓度由(9.97±0.86)×107cells·m L~(-1)下降至(8.26±0.54)×107cells·m L~(-1),有相对减少的趋势.  相似文献   

3.
为进一步提高脱氮效率,该文采用人工快渗(CRJ)系统作为厌氧氨氧化反应器,考察了有机物添加对氮素污染物转化及菌群结构的影响,探讨了厌氧氨氧化协同反硝化脱氮的可行性.结果 表明,通过逐步提高进水COD浓度至20 mg/L,可在49d内实现CRI系统厌氧氨氧化协同反硝化的快速启动,稳定运行期间TN平均去除率达到98.1%,相比未添加有机物时启动周期缩短了11d,TN平均去除率提高了7.3%.当进水COD浓度提高至25 mg/L时,厌氧氨氧化对脱氮的贡献率降低了27.2%,主要厌氧氨氧化功能菌属Candidatus Kuenenia的相对丰度降至12.42%,而反硝化功能菌属Flavobacterium的相对丰度升至11.16%,反硝化菌与厌氧氨氧化菌竞争反应基质而导致厌氧氨氧化活性被削弱,TN平均去除率下降了13.5%.因此,将进水有机物浓度控制在适宜范围时可有效改善厌氧氨氧化的脱氮性能.  相似文献   

4.
任志强  李冬  张杰 《中国环境科学》2022,42(10):4588-4595
为探究侧流游离亚硝酸(FNA)处理后的颗粒-絮体污泥全程自养脱氮(CANON)工艺重新建立的有效策略,采用序批式反应器(SBR)进行实验,探讨不同恢复方式对系统长期运行性能的影响,实现CANON工艺长期稳定运行.结果显示,不同恢复方式对CANON系统重新建立有很大影响,采用非原位高曝气恢复策略的R1经过19d的运行重新建立了稳定的CANON工艺,而采用原位低曝气恢复策略的R2和原位高曝气恢复策略的R3均未能有效重新建立稳定的CANON工艺.R1稳定运行34d时再次出现了亚硝酸盐氧化菌(NOB)增殖的现象.定期水力筛分排出絮状污泥进行FNA处理,达到溶解氧(DO)控制+侧流FNA处理的“双抑制”,能够有效抑制NOB实现CANON工艺的长期稳定运行.典型周期分析结果表明,在恢复过程中,R1内氨氧化菌(AOB)、厌氧氨氧化菌(An AOB)活性均高于R2和R3,并且有效抑制了反应器内残余NOB的活性.随着R1中CANON工艺的重新建立,亚硝化/厌氧氨氧化(SNA)脱氮路径占比由第15d的8.91%增加到了第45d的19.39%,提高了NH4+-N的...  相似文献   

5.
铜、锌离子对厌氧氨氧化污泥脱氮效能的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
通过接种厌氧氨氧化污泥,研究了Cu2+、Zn2+浓度变化对厌氧氨氧化污泥脱氮效能长短期的影响.短期实验结果表明,铜、锌离子对厌氧氨氧化污泥的脱氮效能影响主要分为3个阶段.刺激阶段,Cu2+浓度0~1mg/L和Zn2+浓度0~4mg/L时,随着进水金属离子浓度的增加,微生物活性受到刺激,氮去除速率迅速增加;稳定阶段,Cu2+浓度1~8mg/L时,氮去除速率处于稳定状态.抑制阶段,Cu2+浓度大于8mg/L和Zn2+大于4mg/L时,随着进水金属离子浓度的增加,氮去除速率逐步下降.Cu2+、Zn2+对厌氧氨氧化污泥脱氮效能长期影响表明,当进水Cu2+浓度达到4mg/L和Zn2+达到8mg/L时厌氧氨氧化污泥的活性将受到抑制.降低进水重金属浓度后,厌氧氨氧化污泥活性可以得到恢复.厌氧氨氧化菌对Cu2+的敏感性强于Zn2+.  相似文献   

6.
本研究构建了基于一体式厌氧氨氧化颗粒污泥及絮体污泥的部分硝化-厌氧氨氧化(PN/A)脱氮处理系统,通过运行参数优化调控实现了热水解污泥消化液的高效脱氮.试验结果表明,通过接种厌氧氨氧化菌(AnAOB)生物膜污泥与普通活性污泥、控制高游离氨(FA)(>20mg/L)和限制曝气(DO≤0.2mg/L)等运行条件,能够快速构建短程硝化-厌氧氨氧化反应,亚硝酸盐积累率可达85%以上,脱氮负荷达到0.60kgN/(m3·d).稀释后的热水解污泥消化液仍对AnAOB活性具有一定的抑制作用,导致反应器总氮负荷降至0.20kgN/(m3·d)以下;但系统内AnAOB丰度总体呈增加趋势,说明AnAOB的增殖未受到完全抑制.系统内混合污泥的平均中位径由53μm缓慢增长至109μm.定量PCR数据及高通量分析显示,该处理系统富集了较高纯度的An AOB,最大丰度占比可达8.06%,其优势菌属为Kuenenia菌属.此外,在第93运行周期下Kuenenia菌属在颗粒污泥的丰度占比大于AOB,为5.26%;絮体污泥中具有亚硝化效果的单胞菌属Nitrosomona...  相似文献   

7.
赵婉情  李柏林  王伟  李晔  王恒  汪月  梁亚楠 《环境工程》2020,38(9):43-47,199
在SBR(Ⅰ)反应器中快速启动颗粒-絮状污泥耦合单级自养脱氮系统,研究启动前后颗粒、絮状污泥脱氮性能的变化。取启动前和系统构建成功后的污泥进行批试实验,通过甲醇抑制厌氧氨氧化菌(AAOB)活性来研究厌氧氨氧化和反硝化比例的变化。絮状污泥总氮去除率(NRE)从启动前的10.14%提高至启动成功后的89.70%,其中厌氧氨氧化脱氮占比从2.23%提高到83.70%,反硝化脱氮占比从7.91%减少到5%~6%;颗粒污泥的NRE从启动前3.90%提高至启动成功后的83.20%,厌氧氨氧化占比从不足1%提高到80.20%左右,反硝化占比从7.72%减少到2%~3%。  相似文献   

8.
采用UASB连续流反应器,研究了不同有机物浓度对厌氧氨氧化的脱氮性能及微生物群落结构的长期影响,结果表明,在COD浓度分别为0,20,40,60和80mg/L时,40mg/L COD浓度条件下对厌氧氨氧化反应的促进程度最大,TN和COD去除率稳定在88.5%和75.3%.在低浓度COD(20mg/L)条件下,厌氧氨氧化反应受影响程度不明显,而COD为60和80mg/L时,系统脱氮性能受到不同程度的抑制.通过高通量测序技术对不同COD浓度下的微生物群落结构进行分析,结果表明不同COD浓度下,绿曲挠菌门(Chloroflexi)、浮霉菌门(Planctomycetes)、变形菌门(Proteobacteria)和放线菌门(Actinobacteria)等占据主导,且随着COD浓度从0增至80mg/L,浮霉菌门相对丰度从24.60%降至7.70%,其中的Candidatus Brocadia属降幅最大,丰度从12.14%减至3.63%,变形菌门相对丰度从15.40%增至36.30%,其中Bdelloribrio菌属的增幅最大,丰度从0.01%增至8.39%.  相似文献   

9.
碳源对厌氧氨氧化脱氮性能影响的试验研究   总被引:5,自引:3,他引:2  
分别研究了无机碳源和有机碳源对厌氧氨氧化反应脱氮性能的影响。接种稳定运行的复合式UASB厌氧氨氧化反应器污泥至ASBR反应器进行批式试验,考察不同碳酸氢钠浓度及COD浓度条件下的氮素转化情况,研究碳源对厌氧氨氧化脱氮效果的影响。厌氧氨氧化反应适宜的进水碳酸氢钠浓度为1.5~2.0 mg/L,超过30 mg/L时有机碳源的存在对厌氧氨氧化反应产生抑制作用,COD浓度超过60 mg/L时反应器表现出反硝化特性。无机碳源对厌氧氨氧化反应的影响表现在提供充足碳源和调节反应器pH的综合作用,较高浓度的COD对厌氧氨氧化反应具有抑制作用。  相似文献   

10.
在上流式厌氧污泥床反应器(UASB)中研究硫化物对厌氧氨氧化(Anammox)系统的长期抑制以及投加废铁屑后对系统性能的影响.结果表明:低浓度(<10mg/L)硫化物对系统无显著影响,当其浓度升至20,30,40mg/L时,使脱氮负荷(NRR)分别降低了13%,42%和51%;40mg/L硫化物使比厌氧氨氧化活性(SAA)降低了63%;Anammox细菌对硫化物抑制具有适应性;长期硫化物造成污泥颗粒结构恶化、上浮结块.投加废铁屑可以显著缓解硫化物抑制,使污泥沉降性能和系统脱氮效能快速恢复, 19d后NRR比无硫阶段提高20%(达4.43kg/(m3·d));SAA仅降低了16.8%.微生物群落表明,硫化物使Candidatus Kuenenia相对丰度从18.81%下降到7.31%,适应后丰度恢复,反应器底层丰度比顶层高出15倍;同时产生了反硝化菌(Arenimonas和Thiobacill).废铁屑投加后Candidatus Kuenenia丰度略有下降,顶层丰度高于底层;系统Thiobacillus丰度提高3.36倍,底层反硝化细菌的相对丰度上升.  相似文献   

11.
启动炭管膜曝气生物膜反应器实现全程自养脱氮   总被引:1,自引:0,他引:1  
宫正  刘思彤  杨凤林  张捍民  孟军 《环境科学》2008,29(5):1221-1226
启动包裹无纺布的多微孔炭管为膜组件的膜曝气生物膜反应器(MABR),实现基于短程硝化和厌氧氨氧化的完全自养脱氮.首先接种普通硝化污泥启动反应器,在温度35℃, pH为7.9条件下,通过对膜内腔压力的适当控制逐步降低反应器溶解氧浓度,实现亚硝酸盐的积累.然后再次接种厌氧氨氧化污泥,使无纺布上形成好氧氨氧化菌与厌氧氨氧化菌稳定共存的膜曝气生物膜,从而实现全程自养脱氮结果表明,经过120 d连续运行,在膜内压力为0.015MPa,水力停留时间6 h,进水NH 4-N为200 mg/L±10 mg/L条件下, NH 4-N转化率达到88.7%,出水总氮平均为48.65mg/L,总氮去除率达到83.77%.荧光原位杂交(fluorescent in situ hybridization, FISH)分析表明,好氧氨氧化菌(AOB)和厌氧氨氧化菌作为主要功能菌群分别控制着靠近炭管膜/生物膜界面区域和靠近生物膜/液体界面区域.  相似文献   

12.
利用厌氧颗粒污泥作为种泥,启动SBR反应器,旨在培养全程自养脱氮颗粒污泥以及研究全程自养脱氮过程中污泥理化性质的变化.结果表明,先在厌氧条件下富集厌氧氨氧化微生物,然后在曝入的氮气中添加一定量空气,控制反应器的DO在0.3~0.5 mg/L,实现全程自养脱氮颗粒污泥培养是可行的,总氮去除率最高达到75.3%.实验用水中过高的钙盐和磷盐会形成钙盐沉积物,并在污泥中积累,导致污泥中有机组分减少,污泥脱氮性能变差.降低试验用水中Ca盐的投加量,经过驯化,污泥中的有机组分会逐渐增加,污泥脱氮性能逐渐恢复.  相似文献   

13.
《环境科学与技术》2021,44(5):14-24
文章从微生物活动和脱氮性能等角度出发,综述铁对厌氧氨氧化过程的影响。结果表明,适量铁的添加不仅能促进厌氧氨氧化菌的生长及繁殖,提高Anammox活性,且有利于污泥颗粒化改善沉降效果,同时形成的EPS有助于污泥絮体凝聚,进而显著提高厌氧氨氧化工艺的处理效果。并通过氮源的迁移转化、微生物功能基因丰度及多样性揭示反应过程以厌氧氨氧化为主,Feammox和自养反硝化为辅,发酵型细菌和异养型细菌共同作用实现稳定的脱氮。通过该文介绍将为后续铁元素加强厌氧氨氧化过程的研究提供参考。  相似文献   

14.
微气泡曝气生物膜反应器是微气泡曝气技术与好氧生物处理相结合的新型处理工艺。本研究采用微气泡曝气生物膜反应器在低气水比下处理低C/N比废水,考察了生物脱氮过程和性能,并分析了脱氮功能菌群变化。结果表明,通过低气水比(小于1:2)控制DO浓度并降低进水C/N比,可以实现生物脱氮过程从同步硝化-反硝化向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,并可获得较高的低C/N比废水生物脱氮性能。DO浓度低于1.0 mg·L-1、进水C/N比为1:2.8时,SNAD过程成为生物脱氮的主要途径,TN平均去除率可达到76.3%,TN平均去除负荷为1.42kg·(m3·d)-1,厌氧氨氧化过程对TN去除的贡献率为86.0%。随着进水C/N比降低,生物膜中亚硝化菌群和厌氧氨氧化菌群的相对丰度逐渐增加,而硝化菌群和反硝化菌群的相对丰度逐渐降低。生物脱氮功能菌群变化与脱氮过程转变为SNAD过程相一致。  相似文献   

15.
亚硝化-厌氧氨氧化组合工艺生物脱氮评介   总被引:1,自引:0,他引:1  
本文阐述了亚硝化和厌氧氨氧化两种工艺的生物脱氮原理及研究现状,对亚硝化-厌氧氨氧化脱氮工艺和传统生物脱氮工艺从适用条件、曝气量、反应器容积、污泥产量等角度进行了分析和比较,为后续生物脱氮工艺的研究和选择提供借鉴,并展望了生物脱氮技术的发展方向和研究重点。  相似文献   

16.
微气泡曝气生物膜反应器是微气泡曝气技术与好氧生物处理相结合的新型处理工艺.本研究采用微气泡曝气生物膜反应器在低气水比下处理低C/N比废水,考察了生物脱氮过程和性能,并分析了脱氮功能菌群变化.结果表明,通过低气水比(小于1∶2)控制DO浓度并降低进水C/N比,可以实现生物脱氮过程从同步硝化-反硝化向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,并可获得较高的低C/N比废水生物脱氮性能. DO浓度低于1. 0 mg·L-1、进水C/N比为1∶2. 8时,SNAD过程成为生物脱氮的主要途径,TN平均去除率可达到76. 3%,TN平均去除负荷为1. 42 kg·(m3·d)-1,厌氧氨氧化过程对TN去除的贡献率为86. 0%.随着进水C/N比降低,生物膜中亚硝化菌群和厌氧氨氧化菌群的相对丰度逐渐增加,而硝化菌群和反硝化菌群的相对丰度逐渐降低.生物脱氮功能菌群变化与脱氮过程转变为SNAD过程相一致.  相似文献   

17.
厌氧氨氧化相比于传统脱氮工艺具有脱氮负荷高,温室气体排放量少,成本低等优点,具有广阔的发展前景。然而,厌氧氨氧化菌的倍增速度极为缓慢,对环境的要求十分苛刻,厌氧氨氧化工艺的大规模应用受到很大限制。相关研究表明,控制合理的环境因素、选择合适的接种污泥和反应器,对厌氧氨氧化的快速启动具有举足轻重的作用。文章针对厌氧氨氧化反应器启动缓慢的问题,对前人的研究成果进行总结,探讨了基质浓度源、有机碳源、上升流速等多种控制因素对厌氧氨氧化工艺启动的影响,并介绍了厌氧氨氧化快速启动的接种污泥和常用反应器,以期为厌氧氨氧化脱氮工艺的快速启动提供理论参考。  相似文献   

18.
马斌  许鑫鑫  高茂鸿  委燕  彭永臻 《环境科学》2020,41(3):1377-1383
短程反硝化厌氧氨氧化是一种新型生物脱氮技术,应用于城市污水深度脱氮有望大幅降低外碳源投加量.本研究接种厌氧氨氧化污泥,考察了短程反硝化厌氧氨氧化的深度脱氮性能与污泥特性.结果表明,接种厌氧氨氧化污泥可迅速启动短程反硝化厌氧氨氧化系统,在进水COD/TN为2.19±0.08时,出水TN浓度为(4.82±1.84)mg·L~(-1),实现了低碳源污水深度脱氮.系统粒径大于0.20 mm的污泥占86.16%,污泥实现了颗粒化,有助于厌氧氨氧化菌在系统内的有效持留.将短程反硝化厌氧氨氧化深度脱氮应用于城市污水处理厂二沉池出水深度脱氮,可降低外碳源投加量,同时可降低污水处理厂硝化池耗氧量.  相似文献   

19.
提出了一种推流式一体化短程硝化厌氧氨氧化颗粒污泥反应器的强化启动策略.第1步,在推流式反应器内接种活性污泥并投加固定生物膜填料,通过逐渐提高进水氨氮浓度和曝气量并控制溶解氧在0.2mg/L以下,自养脱氮反应器成功启动并稳定运行,总无机氮去除负荷达1.7kgN/(m3·d).运行期间生物膜逐渐生长、成熟并出现脱落,同时悬浮污泥出现红色颗粒.第2步,填料填充比从20%降低至0,系统的总无机氮去除负荷短暂下降至0.85kgN/(m3·d),平均污泥粒径从270μm降低至163μm.但系统脱氮负荷随着曝气量的增加可迅速恢复,且平均污泥粒径逐渐增加至195μm.结果表明,推流式反应器中悬浮絮体污泥与颗粒污泥可稳定存在,且悬浮污泥系统的脱氮负荷可达1.5kgN/(m3·d),与固定生物膜-活性污泥系统相当.本研究为推流式厌氧氨氧化颗粒污泥工艺的启动提供了可行的方案.  相似文献   

20.
为了加速厌氧氨氧化菌(AnAOB)富集,解决自养脱氮工艺启动缓慢的问题,在短程硝化絮状污泥反应器中投加含有少量AnAOB的悬浮填料,构建泥膜混合移动床生物膜反应器(MBBR)系统,探讨该系统在自养脱氮启动中的作用. 结果表明:①在温度为20~30 ℃、pH为7.8~8.2、DO浓度为0.2~0.9 mg/L的条件下,经45 d的运行,成功富集AnAOB. 通过调整运行模式和曝气量,TN去除率提高至70%左右,成功启动自养脱氮工艺. ②在运行过程中,曝气阶段主要发生短程硝化反应,缺氧阶段主要发生厌氧氨氧化反应. ③泥膜混合MBBR系统中优势的好氧氨氧化菌(AOB)和AnAOB分别为Nitrosomonas和Candidatus_Kuenenia. Nitrosomonas主要分布于絮状污泥中,其相对丰度从42.95%减至30.98%;而Candidatus_Kuenenia主要分布于填料生物膜中,其相对丰度从5.88%增至25.90%. ④泥膜混合MBBR系统中还检测出Ignavibacteriales_bacterium_UTCHB1、Pseudomonas、Denitratisoma等多种反硝化细菌,说明部分TN损失是通过内源反硝化途径实现. 研究显示,基于短程硝化絮状污泥的泥膜混合MBBR系统,可以维持稳定的短程硝化,快速富集AnAOB,也可以有效缩短自养脱氮工艺的启动时间.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号