首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物循环流化床工艺自养反硝化研究   总被引:2,自引:0,他引:2  
对城市污水厂排水进行深度处理时,生物循环流化床提供的兼性环境有利于好氧硝化细菌和兼性厌氧自养反硝化细菌的生长,自养反硝化细菌可以在低有机碳源的情况下,以硫为电子供体进行自养反硝化从而去除NO3--N. 试验以硫作为反硝化的电子供体引入自主研发的生物循环流化床中进行脱氮,试验进水各项指标参照北京市水污染物排放标准(DB11 307-2005)二级限值. 在6个不同的工况下运行,工况5出水水质可达到国家再生利用景观环境用水的水质,出水ρ(NO3--N)为9.23 mg/L,去除率为70.61%;出水ρ(NH4+-N)为2.36 mg/L,去除率为77.54%;出水ρ(TN)为13.53 mg/L,去除率为68.91%;出水ρ(SO42-)为245.15 mg/L,去除的NO3--N与生成的SO42-质量比为1∶7.7.   相似文献   

2.
以污水厂实际二级出水为处理目标,通过中试试验研究了陶粒滤料反硝化生物滤池、固定床反硝化砂滤池和连续过滤连续反冲砂滤池的特性。以甲醇作为外加碳源,3种滤池均可实现出水平均总氮小于5 mg/L。不足量投加外碳源会出现出水亚硝态氮的积累。当进水TN为15 mg/L左右时,为达到出水TN小于5 mg/L,生物滤池、固定床砂滤池和连续过滤砂滤池建议滤速分别为不大于8,5.2,6.2 m/h;滤池反硝化碳源投加比例分别为4.28,3.0,3.2 g甲醇/gTN;对应的反硝化容积负荷平均值分别为1.1,0.8,1.2 kg/(m3·d)。进水组分分析发现,有机氮不是出水总氮小于5 mg/L的限制因素。  相似文献   

3.
针对农村生活污水低碳氮比(C/N)限制反硝化脱氮效果的问题,采用复合固体碳源强化SBR工艺(SCS-SBR)对实际农村水利枢纽污水及村庄污水进行处理,并对特定功能性菌群进行深入分析,发现通过投加PHBV+秸秆复合固体碳源可以有效提高SBR工艺的反硝化能力。结果表明:SCS-SBR工艺稳定运行期出水ρ(COD)、ρ(NH4+-N)和ρ(TN)均保持在25.0,0.4,5.0 mg/L以下,其中村庄污水的TN去除率达到83.1%。微生物测序结果表明,复合固体碳源的投加促进SCS-SBR工艺筛选出特定功能性微生物。不同于传统活性污泥中的硝化细菌(Nitrosomonas)与反硝化细菌(Pseudomonas),SCS-SBR工艺中硝化功能菌主要是norank_f_JG30-KF-CM45,反硝化功能菌主要为Thermomonas和Rubrivivax,其中,Thermomonas的相对丰度在未加固体碳源阶段(AS1、AS2)未检测出(含量过低),在添加固体碳源阶段(SCS1、SCS2)其相对丰度为2.54%和7.55%。此外,活性污泥中好氧型和氧胁迫耐受型菌属Nakamurella的相对丰度由AS1、AS2中的44.52%和57.66%锐减到SCS1、SCS2中的1.06%和0.86%,表明工艺内不能利用固体碳源的微生物被逐渐淘汰。因此,PHBV+秸秆复合固体碳源在规避液体碳源缺陷的同时,能有效提高SBR工艺的反硝化能力,并对系统内功能性微生物进行有效筛选,从而为农村生活污水处理提供了理论基础和技术支持。  相似文献   

4.
基于低碳源污水易硝化难反硝化的问题,构建了在A2O缺氧池添加天然碳源玉米芯的中试系统,采用物料衡算、反硝化速率测定和微生物群落分析等方法,研究了该系统的脱氮效能和反硝化体系特征.结果表明,TN去除率提升13%,出水从16.2降至10.0mg/L;同时不会造成出水氨氮和色度超标的风险.物料衡算表明,COD碳源的氧化消耗量和出水排放量降低,更多的碳源用于反硝化和污泥增殖,从而提升了氮素的去除量,其中反硝化的提升贡献更大.缺氧池形成了悬浮污泥加生物膜的复合型脱氮体系:在污水自身碳源存在时,生物膜和悬浮污泥的反硝化速率分别为24.89和32.42mg/(L∙h),可实现快速脱氮;当自身碳源消耗殆尽,二者的反硝化速率分别是4.71和1.73mg/(L×h),单位生物量反硝化速率分别是1.58和59.1mg NO3--N/(g VSS×h),表明玉米芯主要被生物膜利用以维持反硝化进行.该体系的主要反硝化菌属为Azospira,此外在生物膜表面还富集了能够附着生长的IamiaHaliangium,以及能够降解玉米芯木质素的Sulfuritalea等反硝化菌属.  相似文献   

5.
硝酸盐电子受体反硝化同时除磷试验分析   总被引:5,自引:0,他引:5  
经研究发现AAA SBR系统中的活性污泥可以利用硝酸盐作为电子受体进行缺氧吸磷并同时发生反硝化脱氮。试验利用“双泥”系统进一步探讨了污水生物反硝化同时除磷的可能性,结果表明 :“双泥”系统的“双重”吸磷以及内碳源反硝化除磷方式可以使生物处理出水磷酸盐浓度趋近于零,TP≤ 0 2 3mg L、NH3 N≤ 0 5mg L、TN≤ 8mg L、CODCr≤2 5mg L。  相似文献   

6.
在序批试验中以PCL(聚己内酯)/淀粉共混物为碳源,研究其和砾石系统的反硝化特性,并对水中DOC(溶解性有机碳)组分进行了解析.结果表明,PCL/淀粉共混物可作为反硝化固体碳源去除低C/N水体中的NO3--N,并且不会造成NO2--N的积累. ρ(NO3--N)大于2mg/L时,试验组(PCL/淀粉共混物和砾石)和对照组(PCL/淀粉共混物)的反硝化均为零级反应. 试验组的平均反硝化速率为7.214mg/(L·h),高于对照组〔7.152mg/(L·h)〕,反硝化反应主要发生在固体碳源表面的生物膜中,砾石表面的生物膜也可利用水中的DOC实现反硝化;反硝化反应结束时,砾石表面的微生物也会分泌胞外酶参与PCL/淀粉共混物碳源的降解,导致试验组的ρ(DOC)升至74.50mg/L,高于对照组(40.75mg/L). 试验组和对照组的pH先升后降,是固体碳源降解过程产生的酸性物质与反硝化产生的碱度综合作用的结果. 试验组和对照组的DOC中均发现有还原糖、蛋白类和溶解性微生物产物.   相似文献   

7.
为探究碳源类型在反硝化过程中对氮素转化和微生物群落组成的影响,分别建立R1(以C6H12O6为碳源)和R2(以CH3COONa为碳源)反应器,通过分析R1和R2反应器中反硝化过程的氮素转化情况,评价C6H12O6和CH3COONa对脱氮效果的影响,并运用动力学模型对R1和R2反应器中反硝化能力进行评价;同时,采用高通量测序技术表征2种碳源对反应器中微生物群落结构和多样性的影响.结果表明:①运行后期的R1、R2反应器中单位生物量的反硝化速率(以NO3--N计,下同)分别为8.56、11.26 mg/(g·h),R1反应器中NO2--N累积平均值为11.34 mg/L,显著高于R2反应器(0.20 mg/L),且R1反应器中NH4+-N累积平均值为6.58 mg/L,是R2反应器(0.65 mg/L)的10.11倍.②反应器中NO3--N还原过程均符合Haldane模型,其中R1、R2反应器中单位生物量的rmax(最大降解速率)分别为35.61、47.79 mg/(g·h),表明R2反应器中的反硝化能力强于R1反应器.③微生物经过富集后,其细菌多样性和物种丰度下降,但发挥反硝化作用的微生物相对丰度逐渐增加.R1和R2反应器中共同的优势菌门有Proteobacterias、Bacteroidetes、Firmicutes和Gracilibacters,其在R1反应器中的相对丰度依次为96.14%、2.06%、0.66%和0.47%,在R2反应器中依次为79.75%、6.88%、9.47%和2.13%,优势菌门在不同运行时间的丰度表达上存在消长变化状态.研究显示,C6H12O6和CH3COONa在反硝化过程的氮素转化上存在明显差异,对各类优势菌群的相对丰度有明显影响.   相似文献   

8.
2种生物反硝化法去除地下水中硝酸盐的研究   总被引:1,自引:0,他引:1  
采用砂柱装置,在实验室研究了自养微生物和异养微生物2种生物反硝化方法对地下水中硝酸盐的去除效果。自养反硝化反应在以硫作为电子供体的硫/石灰石/细沙反应柱中进行,异养反硝化反应在石灰石/细沙反应柱中进行,进水增加乙醇作为外加碳源。实验结果用以比较2种反硝化方法在硝酸盐去除率、微生物反应动力学和反应产物三者的异同。结果表明,自养反硝化反应中NO3--N去除率达95.4%,异养反硝化反应去除率可达99.3%;分别与Monod微生物0级、1/2级和1级反应动力学方程进行拟合,2种反硝化反应均符合1/2级微生物反应动力学,适合用1/2级微生物反应方程描述;在反应结束阶段,自养反硝化主要反应产物SO42-出水浓度低于250mg/L,异养反硝化副产物CH3OO-易成为二次污染源,异养反硝化的反硝化速率明显高于自养反硝化反应。  相似文献   

9.
含腈污水脱除氨氮中型试验   总被引:2,自引:0,他引:2  
大庆石化总厂化纤厂从1991年开始进行含腈污水脱除氨氮中型试验研究。采用 O/A/O 方法,利用微生物的作用,对含氮有机物进行硝化和反硝化反应,最后分解成氮气排出。经小试、中试,效果较好,进水氨氮150~344mg/L,出水氨氮20~40mg/L,去除率达87.2%。  相似文献   

10.
移动床膜生物反应器同步硝化反硝化特性   总被引:11,自引:3,他引:8  
杨帅  杨凤林  付志敏 《环境科学》2009,30(3):803-808
采用挂膜填料代替传统膜生物反应器(MBR)的活性污泥,构建一种新型的移动床膜生物反应器 (MBMBR),考察其处理模拟生活污水的效果及同步硝化反硝化(SND)特性.结果表明,移动床膜生物反应器运行67 d,对模拟生活污水表现出良好的去除有机物及同步硝化反硝化能力.进水COD浓度为573.5~997.7 mg/L时,膜出水COD去除率为88.3%~99.2%.进水氨氮浓度为45.5~99.2 mg/L时,膜出水氨氮去除率为72.1%~99.8%,总氮去除率为62.0%~96.3%.批式实验结果表明,生物膜去除总氮的最佳溶解氧浓度为1 mg/L,其中氨氮和总氮去除率分别为100%和60%.生物膜系统内可能存在好氧反硝化现象.DO为3 mg/L且有机碳源充足时,生物膜总氮去除率为99.0%,SND率达到99.8%.扫描电镜对生物膜的观察发现生物膜内部存在着明显的孔隙,有利于溶解氧和有机基质从外界向生物膜内部传递.  相似文献   

11.
为解决微污染水体因低碳氮比而导致脱氮效率差的问题,本文选择聚丁二酸丁二醇酯(PBS)、聚ε-己内酯(PCL)和聚乳酸(PLA)3种生物可降解聚合物,对比其作为填充床反应器的膜载体与反硝化固相碳源的反硝化效果。结果表明:在进水TN质量浓度维持在1 4.31~1 9.21 mg/L,HRT为1.0 h时,PBS填充床的TN平均去除率为94.95%,优于PC L.的84.46%,PLA未能维持良好去除率;PBS与PCL.填充床的平均反硝化速率(以NO_3-N计)分别为1 2.1 4、1 0.11 mg/(L·h),二者出水溶解性有机碳(DOC)先上升后降低至1.3 mg/L,表明二者可被微生物降解,是良好的反硝化固相碳源;PBS与PCL.填充床出水NO_2-N浓度0.1 0 mg/L,NH_3-N浓度0.45 mg/L,出水效果良好,不会造成二次污染;3种固体碳源反应前后质量下降不明显,表明其化学结构未发生显著变化;电子扫描显微镜(SEM)扫描显示PBS和PCL反应表面空隙率较高,反应后被腐蚀痕迹明显,表明二者适合作为生物膜载体供微生物附着生长,PLA表面变化不明显。  相似文献   

12.
低C/N 对湿地中硝化反硝化作用的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
通过监测几种形态氮的变化,研究了人工湿地小试系统在不同浓度和低C/N 条件下的除氮效果和反硝化途径.结果发现,湿地对浓度为5.5~50.5mg/L 的NH4+-N 有很好的去除效果,去除率可达95%以上.在此浓度范围内,NH4+-N 的进、出水浓度呈线性关系, R2 值为0.9971.当进水含氮量低于16.4mg/L 时,湿地的除氮效率随进水浓度的增加而明显增加.进水含氮量为16.4~51.4mg/L 时,湿地的除氮效率为85%以上,且浓度对去除率无显著影响.当C/N<1 时,湿地系统对总氮的去除率为86.3%,而碳源充足的情况下去除率也仅有85.8%,低C/N 对湿地的除氮效果没有显著影响.反硝化可能存在不需要消耗碳源的途径,即在微生物的作用下,NH4+-N 浓度为30mg/L 左右时便直接将NO2--N 还原成N2,此时有机质不是湿地脱氮效果的直接限制因素.  相似文献   

13.
利用固相反硝化同时去除水中硝酸盐和4-氯酚   总被引:5,自引:1,他引:4  
王旭明  王建龙 《环境科学》2009,30(5):1420-1424
研究了固相反硝化技术同时去除水中硝酸盐和4-氯酚的可行性.结果表明,以可降解餐盒为碳源和微生物附着载体进行异养反硝化,能有效去除水中的硝酸盐.在批式实验条件下,当NO-3-N初始浓度为50 mg/L时,平均反硝化速率为24.0 mg/(L·h).当4-氯酚浓度低于30 mg/L时,对反硝化脱氮有促进作用;大于40 mg/L时,对反硝化有抑制作用.在反硝化条件下,当4-氯酚的初始浓度分别为5 mg/L和30 mg/L时,8 h后其去除率分别为90%和71%,4-氯酚的去除是由于可降解餐盒的吸附作用及附着微生物的降解作用.  相似文献   

14.
为解决城市污水深度处理碳源不足导致脱氮效果不佳的问题,该文制备了具有缓慢释碳功能的薯渣固体缓释碳源SCPR。释碳试验与强化反硝化生物滤池(DNBF)脱氮试验表明,SCPR最大有机物释放量为129.87 mg/(L·g),碳源释放过程满足二级动力学,在水力负荷为0.1 m3/(m2·h)、SCPR与陶粒配比为1∶6、进水NO3--N平均浓度为50.09 mg/L时,DNBF中NO3--N、NO2--N与TN去除率分别为75.53%、86.21%与74.98%,出水 COD平均浓度为 25.24 mg/L,SCPR作用下DNBF反硝化反应级数介于零级与一级之间。SCPR具有良好的释碳与强化DNBF脱氮效果的能力,可作为污水深度脱氮处理的碳源。  相似文献   

15.
研究了可降解聚合物聚羟基脂肪酸酯(PHA)作为固体碳源和生物膜载体去除地下水中硝酸盐的影响因素。结果表明,低温反硝化有较大影响,5℃和10℃时的反硝化速率分别只有30℃时的5%和13%。反硝化对进水pH有较强的适应性,在pH4.5-9.5条件下,反硝化速率介于11.2-15.8mg/(Loh)之间。pH为4.5-8.5时,出水亚硝酸盐的浓度相差不大。DO对以反硝化速率影响不大,当进水DO为0.9mg/L-5.0mg/L时,反硝化速率介于12.6-15.8mg/(Loh)之间,出水NO2-N浓度的最大值为0.15 mg/L。  相似文献   

16.
将膨胀颗粒污泥床(EGSB)和曝气生物滤池(BAF)集成,EGSB出水进入BAF进行短程硝化,BAF出水外回流至EGSB反应器为后者提供亚硝态氮,在不需外部投加亚硝态氮的条件下,实现厌氧氨氧化、甲烷化和短程硝化反硝化的耦合, 系统地处理ρ(氨氮)为50 mg/L和ρ(CODCr)为500 mg/L的合成废水.结果表明:当外回流比为200%时,系统CODCr,氨氮和总氮的去除率分别为92.4%,97.4%和80.6%;出水ρ(氨氮),ρ(亚硝态氮),ρ(硝态氮)和ρ(CODCr)分别为1.05,4.30,2.56和35.3 mg/L;CODCr,总氮和氨氮的去除负荷速率分别为1.770,0.137和0.164 kg/(m3·d). 与传统的活性污泥过程相比,EGSB-BAF集成系统回收甲烷1.03  L/d,占系统CODCr去除量的37.0%;在系统总氮的去除过程中,厌氧氨氧化途径占35.9%,短程反硝化途径占47.4%,全程反硝化途径占16.7%.   相似文献   

17.
周圆  支丽玲  郑凯凯  王燕  李激 《环境工程》2020,38(7):100-108
反硝化过程是影响污水处理厂出水总氮达标排放的重要环节之一,进水碳源、回流比、溶解氧(DO)和搅拌方式等均为影响活性污泥反硝化性能的重要因素。通过对太湖流域58座污水处理厂提标改造的运行效果进行评估分析,并对水质波动规律、工艺设计及设备设施等方面进行调研及优化分析,研究了不同条件对活性污泥反硝化速率的影响,探讨了污水处理厂在实际生产运行中反硝化脱氮过程主要存在的问题及对策。结果表明:各厂反硝化速率在0~5.18 mg NO3--N/(g VSS·h)时,平均反硝化速率为1.40 mg NO3--N/(g VSS·h),进水碳源浓度较低为各个污水处理厂反硝化速率较低的主要原因。其中外加碳源的种类、投加点位对反硝化脱氮具有较大的影响,在各厂进水中投加易降解碳源并保持较高的搅拌速率后,发现反硝化潜力为1.16~20.80 mg NO3--N/(g VSS·h),表明改善进水水质并创造较好的反硝化条件,有利于整体反硝化水平的提升。此外,充分的搅拌条件也可增强污泥的反硝化性能。另外,选择合适的内回流比可以有效强化生物反硝化脱氮性能,但内回流中高DO对反硝化影响较大,降低回流DO可以有效提高NO3--N去除量。  相似文献   

18.
为使某污水处理厂出水达标排放,对该厂进行了全流程测试,分析其主要污染物沿工艺流程分布特征以及活性污泥特性,评估工艺运行现状,为该污水处理厂优化调控提供基础数据。研究发现,该厂进水ρ(BOD5)/ρ(TN)仅为2.45,属于典型的低碳氮比进水。此外,通过活性污泥特性测试发现,反硝化潜力为9.0 mg/(g·h),反硝化菌群相对丰度较高。进水碳源不足及外部碳源投加位点设置不合理是该厂无法实现TN达标排放的主要原因。在采取改变碳源投加位点、减小好氧池末端曝气量、增加碳源投加量等措施后,出水ρ(TN)由32.0 mg/L降至12.7 mg/L,实现了TN的达标排放;此外,厌氧释磷潜力由1.3 mg/(g·h)提升至2.6 mg/(g·h),生物除磷能力也有了较大提升。研究提供了一种解决污水处理厂出水水质超标问题的思路,可为含低碳氮比进水的城镇污水处理厂运行调控及稳定达标提供参考。  相似文献   

19.
针对碳源偏低的城市污水,文章采用厌氧/限氧的连续流活性污泥反应器,控制水力停留时间为14 h,污泥回流比为1,COD为80~180 mg/L、TP为8.95~12.25 mg/L、NH_4~+-N为30~33.5 mg/L,考察溶解氧(DO)和二沉池沉淀时间对亚硝化/反硝化同步反应的影响,并对系统微生物菌群进行研究分析。结果表明,污泥中AOB与NDPAOs 2种菌群属类的配比为1.113时,DO范围在0.4~0.7 mg/L,二沉池沉淀时间为3 h,A/OLA连续流中亚硝化和反硝化2个生化反应平衡,脱氮除磷效果最佳,TP的去除率为98.32%,TN的去除率为98.61%。  相似文献   

20.
序批式膜反应器同步硝化和反硝化的特性   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高污水生物脱氮处理的效率和减少外加碳源,研究了序批式膜反应器(SBBR)在有氧情况下处理生活污水中同步硝化和反硝化的特性.试验表明,原水TN为80~110mg/L和溶解氧浓度为0.8~4.0mg/L情况下,出水TN小于15mg/L,NH3-N去除率达100%,TN去除率54%~77%,NH3-N容积负荷率为47~94mg/(L·d),TN容积负荷率为56~113mg/(L·d).TN的变化规律为在NH3-N降到零或最小之前,TN持续降低之后,TN有短时的上升后再缓慢降低.在较大的溶解氧浓度范围内,SBBR具有同步硝化和反硝化的能力,建议将NH3-N降解到零或最小值的时刻,作为同步硝化和反硝化的结束点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号