首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55–72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10–20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50–80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority while both wetland conservation and restoration may be equally important.  相似文献   

2.
ABSTRACT: Watershed management strategies generally involve controlling nonpoint source pollution by implementing various best management practices (BMPs). Currently, stormwater management programs in most states use a performance‐based approach to implement onsite BMPs. This approach fails to link the onsite BMP performance directly to receiving water quality benefits, and it does not take into account the combined treatment effects of all the stormwater management practices within a watershed. To address these issues, this paper proposes a water quality‐based BMP planning approach for effective nonpoint source pollution control at a watershed scale. A coupled modeling system consisting of a watershed model (HSPF) and a receiving water quality model (CE‐QUAL‐W2) was developed to establish the linkage between BMP performance and receiving water quality targets. A Monte Carlo simulation approach was utilized to develop alternative BMP strategies at a watershed level. The developed methodology was applied to the Swift Creek Reservoir watershed in Virginia, and the results show that the proposed approach allows for the development of BMP strategies that lead to full compliance with water quality requirements.  相似文献   

3.
ABSTRACT: Loading rates derived from monitoring natural runoff from selected land uses are compared. Land uses selected for evaluation are construction sites, barnyards, and agriculture (dairying). Runoff volumes, sediment, and nutrient fractions were monitored and expressed as areal loadings for comparison purposes. Sediment yield and total phosphorus (total P) loss was directly proportional to runoff (m3/ha). In decreasing order, the loadings for sediment and total P were as follows: construction site > barnyard > general dairying. Runoff from the barnyard area was approximately 10 times higher in soluble phosphorus and ammonium nitrogen than the other land uses under investigation. Areal loss for nitrate nitrogen was highest from the construction site and was attributed to the higher volume of runoff per unit area. Results show that barnyards in a dairying watershed are potentially a major source of sediment and nutrients, especially those dissolved fractions which have the potential for immediate water quality impacts. Relative to general agricultural land, urban construction sites also appear to be a major source of sediment and nutrients. As with barnyard sites, however, the effect of such sites on water quality likely depends on proximity to surface water bodies and other watershed characteristics affecting delivery ratios of contaminants.  相似文献   

4.
Johnson Sauk Trail Lake remains highly eutrophic, even though the watershed has long been returned to an undisturbed condition with permanent vegetative cover and with little or no land disturbance in the watershed. Internal regeneration of nutrients has been identified as the major source of nutrients to the lake. Lake destratification, selective harvesting and removal of weeds, and control of algal blooms using chelated copper sulfate application followed by potassium permanganate application have all been chosen as management techniques for improving water quality conditions in the lake. These in-lake techniques are considered not as palliative measures, but as necessary tools in enhancing the lake's water quality characteristics.  相似文献   

5.
Best management practices (BMPs) play an important role in improving impaired water quality from conventional row crop agriculture. In addition to reducing nutrient and sediment loads, BMPs such as fertilizer management, reduced tillage, and cover crops could alter the hydrology of agricultural systems and reduce surface water runoff. While attention is devoted to the water quality benefits of BMPs, the potential co‐benefits of flood loss reduction are often overlooked. This study quantifies the effects of selected commonly applied BMPs on expected flood loss to agricultural and urban areas in four Iowa watersheds. The analysis combines a watershed hydrologic model, hydraulic model outputs, and a loss estimation model to determine relationships between hydrologic changes from BMP implementations and annual economic flood loss. The results indicate a modest reduction in peak discharge and economic loss, although loss reduction is substantial when urban centers or other high‐value assets are located downstream in the watershed. Among the BMPs, wetlands, and cover crops reduce losses the most. The research demonstrates that watershed‐scale implementation of agricultural BMPs could provide benefits of flood loss reduction in addition to water quality improvements.  相似文献   

6.
Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.  相似文献   

7.
Establishing aquatic restoration priorities using a watershed approach   总被引:11,自引:0,他引:11  
Since the passage of the Clean Water Act in 1972, the United States has made great strides to reduce the threats to its rivers, lakes, and wetlands from pollution. However, despite our obvious successes, nearly half of the nation's surface water resources remain incapable of supporting basic aquatic values or maintaining water quality adequate for recreational swimming. The Clean Water Act established a significant federal presence in water quality regulation by controlling point and non-point sources of pollution. Point-sources of pollution were the major emphasis of the Act, but Section 208 specifically addressed non-point sources of pollution and designated silviculture and livestock grazing as sources of non-point pollution. Non-point source pollutants include runoff from agriculture, municipalities, timber harvesting, mining, and livestock grazing. Non-point source pollution now accounts for more than half of the United States water quality impairments. To successfully improve water quality, restoration practitioners must start with an understanding of what ecosystem processes are operating in the watershed and how they have been affected by outside variables. A watershed-based analysis template developed in the Pacific Northwest can be a valuable aid in developing that level of understanding. The watershed analysis technique identifies four ecosystem scales useful to identify stream restoration priorities: region, basin, watershed, and site. The watershed analysis technique is based on a set of technically rigorous and defensible procedures designed to provide information on what processes are active at the watershed scale, how those processes are distributed in time and space. They help describe what the current upland and riparian conditions of the watershed are and how these conditions in turn influence aquatic habitat and other beneficial uses. The analysis is organized as a set of six steps that direct an interdisciplinary team of specialists to examine the biotic and abiotic processes influencing aquatic habitat and species abundance. This process helps develop an understanding of the watershed within the context of the larger ecosystem. The understanding gained can then be used to identify and prioritize aquatic restoration activities at the appropriate temporal and spatial scale. The watershed approach prevents relying solely on site-level information, a common problem with historic restoration efforts. When the watershed analysis process was used in the Whitefish Mountains of northwest Montana, natural resource professionals were able to determine the dominant habitat forming processes important for native fishes and use that information to prioritize, plan, and implement the appropriate restoration activities at the watershed scale. Despite considerable investments of time and resources needed to complete an analysis at the watershed scale, the results can prevent the misdiagnosis of aquatic problems and help ensure that the objectives of aquatic restoration will be met.  相似文献   

8.
ABSTRACT: An index of watershed susceptibility to surface water contamination by herbicides could be used to improve source water assessments for public drinking water supplies, prioritize watershed restoration projects, and direct funding and educational efforts to areas where the greatest environmental benefit can be realized. The goal of this study is to use streamflow and herbicide concentration data to develop and evaluate a method for estimating comparative watershed susceptibility to herbicide loss. United States Geological Survey (USGS) concentration data for five relatively water soluble herbicides (alachlor, atrazine, cyanazine, metolachlor, and simazine) were analyzed for 16 Indiana watersheds. Correlation was assessed between observed herbicide losses and: (1) a herbicide runoff index using GIS‐based land use, soil type, SCS runoff curve number, tillage practice, herbicide use estimates, and combinations of these factors; and (2) predicted herbicide losses from a non‐point source pollution model (NAPRA‐Web, an Internet‐based interface for GLEAMS). The highest adjusted R2value was found between herbicide concentration and the runoff curve number alone, ranging from 0.25 to 0.56. Predictions from the simulation model showed a poorer correlation with observed herbicide loss. This indicates potential for using the runoff curve number as a simple herbicide contamination susceptibility index.  相似文献   

9.
Agricultural nonpoint phosphorus (P) pollution is a primary cause of eutrophication in many freshwater systems. Identifying areas that are at high risk for P loss in a watershed and concentrating management efforts on these smaller sections is a more effective method for limiting P loss than implementing general strategies over a broad area. A modified P index scheme was used to assess the risk of P loss and identify critical source areas in the Chaohu Lake watershed on a regional scale. In the new P ranking scheme, soil P sorption index (PSI) and degree of P saturation (DPS) were introduced as source factors to represent the inherent ability of P transport in the soil-water interface. Distance from P sources to Chaohu Lake was also considered as a transport factor to take into account P degradation from source to the final receiving water. The ranking scheme was modified to use available data on the regional scale. P index calculation results showed high spatial variation of P loss risk in the Chaohu Lake watershed. The highest risk areas focused on the downstream parts of the main rivers that discharge into Chaohu Lake. The induction of new components into the P index calculation makes it possible to identify critical source areas of nonpoint P loss on a regional scale, thus allowing decision makers to implement best management practices (BMPs) in such a manner as to minimize P loss to sensitive watercourses.  相似文献   

10.
11.
Dosskey, Michael G., Philippe Vidon, Noel P. Gurwick, Craig J. Allan, Tim P. Duval, and Richard Lowrance, 2010. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams. Journal of the American Water Resources Association (JAWRA) 46(2):261-277. DOI: 10.1111/j.1752-1688.2010.00419.x Abstract: We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality. Our emphasis is on the role that riparian vegetation plays in protecting streams from nonpoint source pollutants and in improving the quality of degraded stream water. Riparian vegetation influences stream water chemistry through diverse processes including direct chemical uptake and indirect influences such as by supply of organic matter to soils and channels, modification of water movement, and stabilization of soil. Some processes are more strongly expressed under certain site conditions, such as denitrification where groundwater is shallow, and by certain kinds of vegetation, such as channel stabilization by large wood and nutrient uptake by faster-growing species. Whether stream chemistry can be managed effectively through deliberate selection and management of vegetation type, however, remains uncertain because few studies have been conducted on broad suites of processes that may include compensating or reinforcing interactions. Scant research has focused directly on the response of stream water chemistry to the loss of riparian vegetation or its restoration. Our analysis suggests that the level and time frame of a response to restoration depends strongly on the degree and time frame of vegetation loss. Legacy effects of past vegetation can continue to influence water quality for many years or decades and control the potential level and timing of water quality improvement after vegetation is restored. Through the collective action of many processes, vegetation exerts substantial influence over the well-documented effect that riparian zones have on stream water quality. However, the degree to which stream water quality can be managed through the management of riparian vegetation remains to be clarified. An understanding of the underlying processes is important for effectively using vegetation condition as an indicator of water quality protection and for accurately gauging prospects for water quality improvement through restoration of permanent vegetation.  相似文献   

12.
ABSTRACT: Non-point source pollution cuntinues to be an important environmental and water quality management problem. For the moat part, analysis of non-point source pollution in watersheds has depended on the use of distributed models to identify potential problem areas and to assess the effectiveness of alternative management practices. To effectively use these models for watershed water quality management, users depend on integrated geographic information systems (GIS)-based interfaces for input/output data management. However, existing interfaces are ad-hoc and the utility of GIS is limited to organization of input data and display of output data. A highly interactive water quality modeling interface that utilizes the functional components and analytical capability of GIS is highly desirable. This paper describes the tight coupling of the Agricultural Non-point Source (AGNPS) water quality model and ARC/INFO GIS software to provide an interactive hybrid modeling environment for evaluation of non-point source pollution in a watershed. The modeling environment is designed to generate AGNPS input parameters from user-specified GIS coverages, create AGNPS input data files, control AGNPS model simulations, and extract and organize AGNPS model output data for display. An example application involving the estimation of pesticide loading in a southern Iowa agricultural watershed demonstrates the capability of the modeling environment. Compared with traditional methods of watershed water quality modeling using the AGNPS model or other ad-hoc interfaces between a distributed model and GIS, the interactive modeling environment system is efficient and significantly reduces the task of watershed analysis using tightly coupled GIS databases and distributed models.  相似文献   

13.
针对珠三角城市流域水环境治理,以珠海市前山河流域水环境综合治理工程为研究实例,分析探讨了流域治理思路和水环境治理勘察设计的部分关键技术。珠三角城市流域治理以流域本底情况为根本依据,综合治理措施以“控源、截污、清淤、补水、修复”为主;流域治理以污水收集处理完善为核心,提升管网摸查与成图设计效率,精准设计管道关键接驳节点,采取适宜的现状管网管养与修复技术,保证城市流域治理工作实施成效。  相似文献   

14.
The purpose of this study is to develop a model for optimal nonpoint source pollution control for the Fei-Tsui Reservoir watershed in Northern Taiwan. Several structural best management practices (BMPs) are selected to treat stormwater runoff. The complete model consists of two interacting components: an optimization model based on discrete differential dynamic programming (DDDP) and a zero-dimensional reservoir water quality model. A predefined procedure is used to locate suitable sites for construction of various selected BMPs in the watershed. In the optimization model, the objective function is to find the best combination of BMP type and placement, which minimizes the total construction and operation, maintenance, and repair (OMR) costs of the BMPs. The constraints are the water quality standards for total phosphorus (TP) and total suspended solids (TSS) concentrations in the reservoir. A zero-dimensional reservoir water quality model of the Vollenweider type is embedded in the optimization framework to simulate pollutant concentrations in Fei-Tsui Reservoir. The resulting optimal cost and benefit of water quality improvement are depicted by the model-derived trade-off curves. The modeling framework developed in the present study could be used as an efficient tool for planning a watershed-wide implementation of BMPs for mitigating stormwater pollution impact on the receiving water bodies.  相似文献   

15.
Place-based resource management, such as watershed or ecosystem management, is being promoted to replace the media-focused approach for achieving water quality protection. We monitored the agricultural area of a 740-ha watershed to determine the nature and scale of farm material transfers, N and P balances, and farmer decisions that influenced them. Using field data and farmer interviews we found that 3 of 15 farms, emphasizing hog, dairy, or cash crops with poultry production, accounted for more than 80% of the inputs and outputs of N and P for the 362-ha agricultural area (332 ha of managed cropland and animal facilities). Feed for hogs (38% each of total N and P) and manure applied to fields as part of the cash crop and poultry operation (28 and 38% of total N and P, respectively) were the dominant inputs. No crops grown in the watershed were fed to animals in the watershed and more manure nutrients were applied from animals outside than from those in the watershed. A strategic decision by the hog farmer to begin marketing finished hogs changed the material transfers and nutrient balances more than tactical decisions by other farmers in allocating manure to cropland. Since the components of agricultural production were not all interconnected, the fundamental assumption of place-based management programs is not well-suited to this situation. Alternative approaches to managing the effect of agriculture on water quality should consider the organization of agricultural production and the role of strategic decisions in controlling farm nutrient balances.  相似文献   

16.
Abstract: Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient‐reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight‐digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.  相似文献   

17.
Abstract: Knowledge of headwater influences on the water‐quality and flow conditions of downstream waters is essential to water‐resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water‐quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass‐balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water‐quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first‐order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first‐order headwaters contribute approximately 70% of the mean‐annual water volume and 65% of the nitrogen flux in second‐order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth‐ and higher‐order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water‐resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters.  相似文献   

18.
ABSTRACT: The persistence of water quality problems has directed attention towards the reduction of agricultural nonpoint sources of phosphorus (P) and nitrogen (N). We assessed the practical impact of three management scenarios to reduce P and N losses from a mixed land use watershed in central Pennsylvania, USA. Using Scenario 1 (an agronomic soil P threshold of 100 mg Mehlich‐3 P kg‐1, above which no crop response is expected), 81 percent of our watershed would receive no P as fertilizer or manure. Under Scenario 2 (an environmental soil P threshold of 195 mg Mehlich‐3 P kg‐1, above which the loss of P in surface runoff and subsurface drainage increases greatly), restricts future P inputs in only 51 percent of the watershed. Finally, using scenario 3 (P and N indices that account for likely source and transport risks), 25 percent of the watershed was at high risk or greater of P loss, while 60 percent of the watershed was classified as of high risk of nitrate (NO3) leaching. Areas at risk of P loss were near the stream channel, while areas at risk of NO3 leaching were near the boundaries of the watershed, where freely draining soils and high manure and fertilizer N applications coincide. Remedial measures to minimize P export should focus on critical source areas, while remedial measures to reduce N losses should be source based, concentrating on more efficient use of N by crops.  相似文献   

19.
Source water protection planning (SWPP) is an approach to prevent contamination of ground and surface water in watersheds where these resources may be abstracted for drinking or used for recreation. For SWPP the hazards within a watershed that could contribute to water contamination are identified together with the pathways that link them to the water resource. In rural areas, farms are significant potential sources of pathogens. A risk-based index can be used to support the assessment of the potential for contamination following guidelines on safety and operational efficacy of processes and practices developed as beneficial approaches to agricultural land management. Evaluation of the health risk for a target population requires knowledge of the strength of the hazard with respect to the pathogen load (massxconcentration). Manure handling and on-site wastewater treatment systems form the most important hazards, and both can comprise confined and unconfined source elements. There is also a need to understand the modification of pathogen numbers (attenuation) together with characteristics of the established pathways (surface or subsurface), which allow the movement of the contaminant species from a source to a receptor (water source). Many practices for manure management have not been fully evaluated for their impact on pathogen survival and transport in the environment. A key component is the identification of potential pathways of contaminant transport. This requires the development of a suitable digital elevation model of the watershed for surface movement and information on local groundwater aquifer systems for subsurface flows. Both require detailed soils and geological information. The pathways to surface and groundwater resources can then be identified. Details of land management, farm management practices (including animal and manure management) and agronomic practices have to be obtained, possibly from questionnaires completed by each producer within the watershed. To confirm that potential pathways are active requires some microbial source tracking. One possibility is to identify the molecular types of Escherichia coli present in each hazard on a farm. An essential part of any such index is the identification of mitigation strategies and practices that can reduce the magnitude of the hazard or block open pathways.  相似文献   

20.
ABSTRACT: This paper describes a concerted effort by the Taiwan Water Resources Bureau, the City of Taipei, and the Bureau of Fei‐tsui Reservoir Management to protect the water quality in the Fei‐tsui Reservoir.The reservoir is the major source of water supply for over two million people in the metropolitan area of Taipei. Over the years the reservoir has suffered from siltation and more recently eutrophication. The sources of the pollution are traced to the hundreds of tea gardens, rice fields and other agricultural areas in the watershed and to urban sources such as construction sites. Large amounts of nutrients enter the reservoir by way of storm water runoff during storm or typhoon events. Since 1999, various agencies have worked to initiate an effort to reduce nonpoint pollution in the Fei‐Tsui Reservoir watershed. Practices being considered include nonstructural measures such as nutrient management, and structural measures such as swales, detention basins, and wetlands, in addition to erosion and sediment control methods. A number of field tests have been completed on the performance of selected best management practices (BMPs). A strategy for implementing the BMPs at the watershed scale has been developed based on a total maximum daily load (TMDL) analysis that is reported in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号