首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The effects of enriching natural gas with hydrogen on local flame extinction, combustion instabilities and power output have been widely studied for both stationary and mobile systems. On the contrary, the issues of explosion safety for hydrogen–methane mixtures are still under investigation.In this work, experimental tests were performed in a 5 L closed cylindrical vessel for explosions of hydrogen–methane mixtures in stoichiometric air. Different compositions of hydrogen–methane were tested (from pure methane to pure hydrogen) at varying initial pressures (1, 3 and 6 bar).Results have allowed the quantification of the combined effects of both mixture composition (i.e., hydrogen content in the fuel) and initial pressure on maximum pressure, maximum rate of pressure rise and burning velocity. The measured burning velocities were also correlated by means of a Le Chatelier’s Rule-like formula. Good predictions have been obtained (at any initial pressure), except for mixtures with hydrogen molar content in the fuel higher than 50%.  相似文献   

2.
Explosibility studies of hybrid methane/air/cork dust mixtures were carried out in a near-spherical 22.7 L explosibility test chamber, using 2500 J pyrotechnic ignitors. The suspension dust burned as methane/air/dust clouds and the uniformity of the cork dust dispersion inside the chamber was evaluated through optical dust probes and during the explosion the pressure and the temperature evolution inside the reactor were measured. Tested dust particles had mass median diameter of 71.3 μm and the covered dust cloud concentration was up to 550 g/m3. Measured explosions parameters included minimum explosion concentration, maximum explosion pressures and maximum rate of pressure rise. The cork dust explosion behavior in hybrid methane/air mixtures was studied for atmospheres with 1.98 and 3.5% (v/v) of methane. The effect of methane content on the explosions characteristic parameters was evaluated. The conclusion is that the risk and explosion danger rises with the increase of methane concentration characterized by the reduction of the minimum dust explosion concentration, as methane content increases in the atmosphere. The maximum explosion pressure is not very much sensitive to the methane content and only for the system with 3.5% (v/v) of methane it was observed an increase of maximum rate of pressure rise, when compared with the value obtained for the air/dust system.  相似文献   

3.
Experiments about the influence of ultrafine water mist on the methane/air explosion were carried out in a fully sealed visual vessel with methane concentrations of 8%, 9.5%, 11% and 12.5%. Water mists were generated by two nozzles and the droplets' Sauter Mean Diameters (SMD) were 28.2 μm and 43.3 μm respectively which were measured by Phase Doppler Particle Anemometer (PDPA). A high speed camera was used to record the flame propagation processes. The results show that the maximum explosion overpressure, pressure rising rate and flame propagation velocity of methane explosions in various concentrations increased significantly after spraying. Furthermore, the brightness of explosion flame got much higher after spraying. Besides, the mist with a larger diameter had a stronger turbulent effect and could lead to a more violent explosion reaction.  相似文献   

4.
Multi-component gas mixture explosion accidents occur and recur frequently, while the safety issues of multi-component gas mixture explosion for hydrogen–methane mixtures have rarely been addressed.Numerical simulation study on the confined and vented explosion characteristics of methane-hydrogen mixture in stoichiometric air was conducted both in the 5 L vessel and the 64 m3 chamber, involving different mixture compositions and initial pressures. Based on the results and analysis, it is shown that the addition of hydrogen has a negative effect on the explosion pressure of methane-hydrogen mixture at adiabatic condition. While in the vented explosion, the addition of the hydrogen has a significant positive effect on the explosion hazard degree. Additionally, the addition of hydrogen can induce a faster reactivity and enhance the sensitivity of the mixture by reducing the explosion time and increasing the rate of pressure rise both in confined and vented explosion. Both the maximum pressure and the maximum rate of pressure rise increase with initial pressure as a linear function, and also rise with the increase of hydrogen content in fuel. The increase in the maximum rate of pressure rise is slight when hydrogen ratio is lower than 0.5, however, it become significant when hydrogen ratio is higher than 0.5. The maximum rate of pressure rise for stoichiometric hydrogen-air is about 10 times the one of stoichiometric methane-air.Furthermore, the vent plays an important role to relief pressure, causing the decrease in explosion pressure and rate of pressure rise, while it can greatly enhance the flame speed, which will extend the hazard range and induce secondary fire damages. Additionally it appears that the addition of hydrogen has a significant increasing effect on the flame speed. The propagation of flame speed in confined explosion can be divided into two stages, increase stage and decrease stage, higher hydrogen content, higher slope. But in the vented explosion, the flame speed keeps increasing with the distance from the ignition point.  相似文献   

5.
Flame propagation and combustion characteristics of methane/air mixed gas in gas explosion were studied in a constant volume combustion bomb. Stretched flame propagation velocity, unstretched laminar flame propagation velocity, unstretched laminar combustion velocity and Markstein length were obtained at various ratios of nitrogen to gas mixture. Combustion stability at various ratios of nitrogen to gas mixture was analyzed by analyzing the pictures of flame propagation. Furthermore, the effect of initial pressure on the flame propagation and combustion characteristics of methane/air mixed gas in gas explosion was analyzed. The results show that the unstretched laminar flame propagation velocity, the unstretched laminar combustion velocity, Markstein length, flame stability, and the maximum combustion pressure decrease distinctly with the increase of nitrogen fraction in the gas mixture. At the same ratios of nitrogen to gas mixture, Markstein length, unstretched laminar flame propagation velocity and unstretched laminar combustion velocity decrease and the maximum combustion pressure increase with the increase of initial pressure of the gas mixture. When nitrogen fraction in the gas mixture is over 20%, the flame will be unstable and is easy to exterminate.  相似文献   

6.
湍流状态下甲烷爆炸特性的实验研究   总被引:6,自引:0,他引:6  
利用20L近球形气体爆炸反应装置,测试甲烷在宏观静止和湍流两种不同状态下的爆炸特性。实验结果表明:甲烷的爆炸极限受其流动状态的影响不明显;湍流状态下甲烷爆炸压力Pm和爆炸压力上升速率(dp/dt)m较宏观静止状态明显增大,爆炸压力峰值时间tm明显缩短,其中爆炸压力上升速率受湍流影响较为显著;甲烷浓度不同,其爆炸受湍流影响的程度也不同,较高浓度(11%~16%)时的Pm受湍流的影响程度较大,越靠近最佳浓度(dp/dt)m和tm受湍流的影响程度越大;同一浓度下Pm和(dp/dt)m随着湍流的加强而增大,tm则缩短。该研究表明,避免和减少湍流对矿井瓦斯爆炸过程的抑制具有重要作用。  相似文献   

7.
This paper reports the results of flammability studies for methane, propane, hydrogen, and deuterium gases in air conducted by the Pittsburgh Research Laboratory. Knowledge of the explosion hazards of these gases is important to the coal mining industry and to other industries that produce or use flammable gases. The experimental research was conducted in 20 L and 120 L closed explosion chambers under both quiescent and turbulent conditions, using both electric spark and pyrotechnic ignition sources. The data reported here generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results illustrate the complications associated with buoyancy, turbulence, selective diffusion, and ignitor strength versus chamber size. Although the lower flammable limits (LFLs) are well defined for methane (CH4) and propane (C3H8), the LFLs for hydrogen (H2) and its heavier isotope deuterium (D2) are much more dependent on the limit criterion chosen. A similar behavior is observed for the upper flammable limit of propane. The data presented include lower and upper flammable limits, maximum pressures, and maximum rates of pressure rise. The rates of pressure rise, even when normalized by the cube root of the chamber volume (V1/3), are shown to be sensitive to chamber size.  相似文献   

8.
An analysis was completed of the hazards and risks of hydrogen, compared to the traditional fuel sources of gasoline and natural gas (methane). The study was based entirely on the physical properties of these fuels, and not on any process used to store and extract the energy. The study was motivated by the increased interest in hydrogen as a fuel source for automobiles.The results show that, for flammability hazards, hydrogen has an increased flammability range, a lower ignition energy and a higher deflagration index. For both gasoline and natural gas (methane) the heat of combustion is higher (on a mole basis). Thus, hydrogen has a somewhat higher flammability hazard.The risk is based on probability and consequence. The probability of a fire or explosion is based on the flammability range, the auto-ignition temperature and the minimum ignition energy. In this case, hydrogen has a larger flammability zone and a lower minimum ignition energy—thus the probability of a fire or explosion is higher. The consequence of a fire or explosion is based on the heat of combustion, the maximum pressure during combustion, and the deflagration index. Hydrogen has an increased consequence due to the large value of the deflagration index while gasoline and natural gas (methane) have a higher heat of combustion. Thus, based on physical properties alone, hydrogen poses an increase risk, primarily due to the increased probability of ignition.This study was unable to assess the effects of the increased buoyancy of hydrogen—which might change the probability depending on the actual physical situation.A complete hazard and risk analysis must be completed once the actual equipment for hydrogen storage and energy extraction is specified. This paper discusses the required procedure.  相似文献   

9.
Explosion indices and explosion behaviour of Al dust/H2/air mixtures were studied using standard 20 l sphere. The study was motivated by an explosion hazard occurring at some accidental scenarios considered now in ITER design (International Thermonuclear Experimental Reactor). During Loss-of-Vacuum or Loss-of-Coolant Accidents (LOCA/LOVA) it is possible to form inside the ITER vacuum vessel an explosible atmosphere containing fine Be or W dusts and hydrogen. To approach the Be/H2 explosion problem, Be dust is substituted in this study by aluminium, because of high toxicity of Be dusts. The tested dust concentrations were 100, 200, 400, 800, and 1200 g/m3; hydrogen concentrations varied from 8 to 20 vol. % with 2% step. The mixtures were ignited by a weak electric spark. Pressure evolutions were recorded during the mixture explosions. In addition, the gaseous compositions of the combustion products were measured by a quadruple mass-spectrometer. The dust was involved in the explosion process at all hydrogen and dust concentrations even at the combination ‘8%/100 g/m3’. In all the other tests the explosion overpressures and the pressure rise rates were noticeably higher than those relevant to pure H2/air mixtures and pure Al dust/air mixtures. At lower hybrid fuel concentrations the mixture exploded in two steps: first hydrogen explosion followed by a clearly separated Al dust explosion. With rising concentrations, the two-phase explosion regime transits to a single-phase regime where the two fuel components exploded together as a single fuel. In this regime both the hybrid explosion pressures and pressure rise rates are higher than either H2 or Al ones. The two fuels compete for the oxygen; the higher the dust concentration, the more part of O2 it consumes (and the more H2 remains in the combustion products). The test results are used to support DUST3D CFD code developed at KIT to model LOCA or LOVA scenarios in ITER.  相似文献   

10.
The hazardous effect of dynamic pressure and strong gas flows induced by a methane–air mixture explosion in underground coal mines is studied. The dynamic pressure effect of a methane–air explosion was analyzed by numerical simulation, in a duct and tunnel. Compared to the overpressure generated by an explosion that can act on a body, the dynamic pressure caused by the high-speed flow of the gaseous combustion products can cause serious damage as well. At the structural opening of a coal mine, the destruction caused by the dynamic pressure induced by a methane–air explosion is more serious than the overpressure. For a tube or tunnel partially filled by a methane–air mixture, the dynamic pressure is lower than the overpressure in the region occupied by the flammable mixture. Beyond the premixed region, the dynamic pressure is of the same order of magnitude as the overpressure.  相似文献   

11.
对不同初始压力和温度条件下的甲烷/空气混合气的爆炸极限进行实验研究,利用最大-最小准则来确定爆炸极限.分析了温度和压力对甲烷/空气混合气燃爆特性的影响.采用氮气作为惰性气体,对其防爆抑爆效果进行了实验研究.  相似文献   

12.
The wood gasification process poses serious concerns about the risk of explosion. The design of prevention and mitigation measures requires the knowledge of safety parameters, such as the maximum explosion pressure, the maximum rate of pressure rise and the gas deflagration index, KG, at standard ambient temperature (25 °C) and pressure (1 bar) conditions. However, the analysis at specific process conditions is strongly recommended, as the explosion behavior of gas mixtures may be completely different.In the work presented in this paper, the explosion behavior of mixtures with composition representative of wood chip-derived syngas (CO/H2/CH4/CO2/N2 mixtures with and without H2O) was experimentally studied in a closed combustion chamber. Experiments were run at two temperatures, 300 °C and 10 °C, and at atmospheric pressure. Test conditions were requested by the safety engineering designer of an existing industrial-scale wood gasification plant. In order to identify the specific fuel–air ratios to be analyzed, thus reducing the number of experimental tests, a preliminary thermo-kinetic study was performed.Results have shown that the mixtures investigated can be classified as low-reactivity mixtures, the higher value of KG found (∼36 bar m/s) being much lower than the KG value of methane (55 bar m/s @ 25 °C).  相似文献   

13.
在20 L爆炸实验装置中,开展了3种不同中值粒径的EVA树脂粉尘/甲烷/空气所组成的杂混物爆炸特性研究,探究了甲烷浓度对粉尘爆炸下限、最大爆炸压力的影响。结果表明,尽管添加的甲烷气体浓度低于爆炸下限,仍使得粉尘爆炸下限得以降低,粒径较大的EVA III粉尘,当甲烷体积分数为1%时,爆炸下限降低约25%;粒径较小的EVA I粉尘,当混入甲烷体积分数为4%时,爆炸下限则降低80%;甲烷体积分数每增加1%,可燃粉尘最大爆炸压力上升约10%,但对于粒径较小的EVA I粉尘,当甲烷体积分数为4%时,最大爆炸压力的上升呈现突变趋势,上升近50%。  相似文献   

14.
In order to study the influences of coal dust components on the explosibility of hybrid mixture of methane and coal dust, four kinds of coal dust with different components were selected in this study. Using the standard 20 L sphere, the maximum explosion pressure, explosion index and lower explosion limits of methane/coal dust mixtures were measured. The results show that the addition of methane to different kinds of coal dust can all clearly increase their maximum explosion pressure and explosion index and decrease their minimum explosion concentration. However, the increase in the maximum explosion pressure and explosion index is more significant for coal dust with lower volatile content, while the decrease in the minimum explosion concentration is more significant for coal dust with higher volatile content. It is concluded that the influence of methane on the explosion severity is more pronounced for coal dust with lower volatile content, but on ignition sensitivity it is more pronounced for coal dust with higher volatile content. Bartknecht model for predicting the lower explosion limits of methane/coal dust mixture has better applicability than Le Chatelier model and Jiang model. Especially, it is more suitable for hybrid mixtures of methane and high volatile coal dust.  相似文献   

15.
Many industrial processes are run at non-atmospheric conditions (elevated temperatures and pressures, other oxidizers than air). To judge whether and if yes to what extent explosive gas(vapor)/air mixtures will occur or may be generated during malfunction it is necessary to know the safety characteristic data at the respective conditions. Safety characteristic data like explosion limits, are depending on pressure, temperature and the oxidizer. Most of the determination methods are standardized for ambient conditions. In order to obtain determination methods for non-atmospheric conditions, particularly for higher initial pressures, reliable ignition criteria were investigated. Ignition tests at the explosion limits were carried out for mixtures of methane, propane, n-butane, n-hexane, hydrogen, ammonia and acetone in air at initial pressures up to 20 bar. The tests have been evaluated according to different ignition criteria: visual flame propagation, temperature and pressure rising. It could be shown that flame propagation and occasionally self-sustained combustion for several seconds occurred together with remarkable temperature rise, although the pressure rise was below 3%. The results showed that the combination of a pressure rise criterion of 2% and a temperature rise criterion of 100 K seems to be a suitable ignition criterion for the determination of explosion limits and limiting oxidizer concentration at higher initial pressures and elevated temperatures. The tests were carried out within the framework of a R&D project founded by the German Ministry of Economics and Technology.  相似文献   

16.
An experimental system including pressure transducer, electric spark ignition device, data acquisition and control unit was set up to investigate methane–air explosions in a horizontal pipe closed at both ends with or without the presence of obstacles and deposited coal dust. The experimental results show that explosion characteristics depended on the methane content, on the layout of obstacles, and on the deposited coal dust. Pressure fluctuation with a frequency of 150 Hz appeared in its crest when the methane content was close to the stoichiometric ratio (9.5% methane percentage by volume). The pressure rise rate increased locally when a single obstacle was mounted in the pipe, but it had little effect on the pressure peak. Repeated obstacles mounted in the pipe caused the pressure to rise sharply, and the mean maximum explosion overpressure increased with the increase of the obstacle’s number. The amplitude of pressure fluctuation was reduced when deposited coal dust was paved in the bottom of the pipe. However, when repeated obstacles were arranged inside, the maximum overpressures were higher with coal dust deposited than pure gas explosions.  相似文献   

17.
An experimental study has been conducted to investigate the effects of hydrogen addition on the fundamental propagation characteristics of methane/air premixed flames at different equivalence ratios in a venting duct. The hydrogen fraction in the methane–hydrogen mixture was varied from 0 to 1 at equivalence ratios of 0.8, 1.0 and 1.2. The results indicate that the tendency towards flame instability increased with the fraction of hydrogen, and the premixed hydrogen/methane flame underwent a complex shape change with the increasing hydrogen fraction. The tulip flame only formed when the fraction of hydrogen ranged from 0 to 50% at an equivalence ratio of 0.8. It was also found that the flame front speed and the overpressure increased significantly with the hydrogen fraction. For all equivalence ratios, the stoichiometric flame (Φ = 1.0) has the shortest time of flame propagation and the maximum overpressure.  相似文献   

18.
A novel computational approach based on the coupled 3D Flame-Tracking–Particle (FTP) method is used for numerical simulation of confined explosions caused by preflame autoignition. The Flame-Tracking (FT) technique implies continuous tracing of the mean flame surface and application of the laminar/turbulent flame velocity concepts. The Particle method is based on the joint velocity–scalar probability density function approach for simulating reactive mixture autoignition in the preflame zone. The coupled algorithm is supplemented with the database of tabulated laminar flame velocities as well as with reaction rates of hydrocarbon fuel oxidation in wide ranges of initial temperature, pressure, and equivalence ratio. The main advantage of the FTP method is that it covers both possible modes of premixed combustion, namely, frontal and volumetric. As examples, combustion of premixed hydrogen–air, propane–air, and n-heptane–air mixtures in enclosures of different geometry is considered. At certain conditions, volumetric hot spots ahead of the propagating flame are identified. These hot spots transform to localized exothermic centers giving birth to spontaneous ignition waves traversing the preflame zone at very high apparent velocities, i.e., nearly homogeneous preflame explosion occurs. The abrupt pressure rise results in the formation of shock waves producing high overpressure peaks after reflections from enclosure walls.  相似文献   

19.
In order to deeply understand the inhibitory effect of ultrafine water mist containing methane-oxidizing bacteria on methane explosion, a small-sized semi-closed visual experimental platform was built. Five different application mist amounts (0.7 mL, 2.1 mL, 3.5 mL, 4.9 mL, 6.3 mL) of ultrafine water mist containing methane-oxidizing bacteria on 9.5% methane explosion were studied experimentally. Ultrafine water mist was generated by the ultrasonic atomization generator, and mist size was measured by a winner319 laser particle size analyzer. During the methane explosion, a high-frequency pressure sensor collected pressure change data, and a high-speed camera recorded the flame development process. The results indicated that the maximum explosion overpressure (ΔPmax) decreased with time, and the arrival time of the maximum explosion overpressure (ΔPmax) delayed. The appearance time of the “tulip” shaped flame delayed, and the flame propagation speed decreased. The ultrafine water mist and deposition can effectively inhibit the methane explosion. The explosion suppression effect of the second step spraying water mist was better. The improvement of the explosion suppression effect of the ultrafine water mist containing methane-oxidizing bacteria was attributed to the degradation effect of the methane-oxidizing bacteria. Under long-term degradation, methane-oxidizing bacteria in water mist play a role in inhibiting methane explosion.  相似文献   

20.
Gas explosion in connected vessels usually leads to high pressure and high rate of pressure increase which the vessels and pipes can not tolerate. Severe human casualties and property losses may occur due to the variation characteristics of gas explosion pressure in connected vessels. To determine gas explosion strength, an experimental testing system for methane and air mixture explosion in a single vessel, in a single vessel connected a pipe and in connected vessels has been set up. The experiment apparatus consisted of two spherical vessels of 350 mm and 600 mm in diameter, three connecting pipes of 89 mm in diameter and 6 m in length. First, the results of gas explosion pressure in a single vessel and connected vessels were compared and analyzed. And then the development of gas explosion, its changing characteristics and relevant influencing factors were analyzed. When gas explosion occurs in a single vessel, the maximum explosion pressure and pressure growth rate with ignition at the center of a spherical vessel are higher than those with ignition on the inner-wall of the vessel. In conclusion, besides ignition source on the inner wall, the ignition source at the center of the vessels must be avoided to reduce the damage level. When the gas mixture is ignited in the large vessel, the maximum explosion pressure and explosion pressure rising rate in the small vessel raise. And the maximum explosion pressure and pressure rising rate in connected vessels are higher than those in the single containment vessel. So whenever possible, some isolation techniques, such as fast-acting valves, rotary valves, etc., might be applied to reduce explosion strength in the integrated system. However, when the gas mixture is ignited in the small vessel, the maximum explosion pressures in the large vessel and in the small vessel both decrease. Moreover, the explosion pressure is lower than that in the single vessel. When gas explosion happens in a single vessel connected to a pipe, the maximum explosion pressure occurs at the end of the pipe if the gas mixture is ignited in the spherical vessel. Therefore, installing a pipe into the system can reduce the maximum explosion pressure, but it also causes the explosion pressure growth rate to increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号