首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用碘消徐碱性和中性溶液中硫化物及硫代硫酸盐对Cr^ 6测定的干扰,经实验找出了含硫化物和硫代硫酸盐工业废水中Cr^ 6的测定方法。  相似文献   

2.
利用碘消除碱性和中性溶液中硫化物及硫代硫酸盐对 Cr+ 6 测定的干扰 ,经实验找出了含硫化物和硫代硫酸盐工业废水中 Cr+ 6的测定方法  相似文献   

3.
采用NaS_2O_3-CuSO_4-NH_4OH-Na_3(C_6H_5O_7)体系,从废弃手机电子元器件中浸取银,考察了硫代硫酸钠浓度、氨水浓度、硫酸铜浓度、柠檬酸钠浓度、温度以及浸出时间等对浸银过程的影响,结果表明:当硫代硫酸钠为0.2 mol/L,氨水为0.2 mol/L,硫酸铜为0.01 mol/L,柠檬酸钠为0.05 mol/L,温度为40℃,搅拌速率为400 r/min,固液比1∶200(g/m L),浸出时间为24 h时,银的浸出率约为94.1%,柠檬酸钠的添加可明显提高银的浸出速率,从而降低硫代硫酸钠的消耗量。  相似文献   

4.
目前,测定硫酸盐化速率采用的是碱片———重量法。将用碳酸钾溶液浸渍过的玻璃纤维滤膜曝露于空气中,与空气中的二氧化硫、硫酸雾、硫化氢等发生反应,生成硫酸盐,测定生成的硫酸盐含量,计算硫酸盐化速率。下面,我们就对碱片制备、样品采集和实验室分析过程中一些可...  相似文献   

5.
薛光 《上海环境科学》1991,10(5):32-33,35
前言硫代米蚩酮是金、银、铊等元素的高灵敏度显色剂。但,用于人发中铜含量的测定,尚未见有报道。本实验表明,在酸性介质中,在表面活性剂存在下,硫代米蚩酮能与亚铜离子形成一种高灵敏度的有色络合物。以全差示分光光度法测定人发中的铜,方法简便、快速;选择性好,灵敏度高;发中常量元素,均不干扰测定。实验部分一、仪器与试剂 (一) 仪器 7215型全差示分光光度计。 (二) 试剂 1.铜标准溶液准确称取0.1000g(99.99%)金属铜,溶于少量HNO_3中;煮沸蒸发至近干;续加水溶解,移入1000ml容量瓶中,以水稀至  相似文献   

6.
水滑石是一种高效的电吸附材料,可用于工业废水中硫代硫酸盐的去除.硫代硫酸盐(S2O2-3)是废水中主要含硫污染物.本研究采用共沉淀法,在泡沫镍基体上成功合成了Ni Al-LDHs,并经煅烧成功转化为Ni Al-LMO电极.NiAl-LMO电极电化学性能稳定,可逆性好,比电容可达577F·g-1.NiAl-LMO电极在外加电压为1. 0 V、p H为7、温度40℃时,对S2O2-3电吸附效率最高达60.9%,施加相反电压后S2O2-3电脱附率达84.9%.本研究为含S2O2-3废水处理提供了新的电吸附电极材料和技术选择.  相似文献   

7.
本研究用二次回归正交设计法进行试验设计,研究了硫酸盐、亚硫酸盐、和硫代硫酸盐对甲烷菌的协同抑制作用。对试验结果分析得出了协同抑制作用动力学方程式,并发现硫酸盐、亚硫酸盐、和硫代硫酸盐对甲烷菌协同抑制作用具有可加性。  相似文献   

8.
生物处理含硫酸盐废水生成单质硫的研究进展   总被引:1,自引:0,他引:1  
介绍了目前国内外生物处理含硫酸盐废水生成单质硫常用微生物,包括光合细菌、无色硫细菌和脱氮硫杆菌,对其脱硫原理及发展前景进行了分析;同时综述了两相厌氧吹脱与沼气脱硫联合工艺、两相厌氧与硫化物氧化联合工艺、同步脱硫脱氮工艺处理硫酸盐生成单质硫的原理及研究现状,并分析了各自的优缺点。  相似文献   

9.
提出了一种新的测定可溶性硫酸盐的电量分析方法,此法基于SO4^2-与BaCrO4反应释放出CrO4^2-经酸化后转变为Cr2O7^2-,然后用碘量库伦滴定法测定Cr2O7^2-,根据库仑滴定消耗的电量,通过化学计量关系,并按法拉第定律计算出硫酸盐含量。此法可测定μg量的硫酸盐,适于测定水系中可溶性硫酸盐。  相似文献   

10.
硫酸盐还原菌(sulfate-reducing prokaryotes,SRP)和硫氧化菌(sulfur-oxidizing prokaryotes,SOP)在硫的生物地球化学循环中发挥着极为重要的作用.本文以SRP作为高丰富度高多样性菌群代表,针对于SRP所共有的异化型亚硫酸盐还原酶(dissimilatory sulphite reductase,DSR)中的β亚基基因(dsr B),通过克隆文库技术、454高通量测序技术和Illumina高通量测序技术对其群落特征进行比较分析.结果表明,Illumina高通量测序技术优于454高通量测序技术和克隆文库技术,特别在低丰度物种的检测方面,Illumina高通量测序技术具有明显优势.以SOP soxB基因(~750 bp)作为较长基因片段的代表,分别采用454高通量测序技术和Illumina单端高通量测序技术对SOP群落组成和多样性信息进行比较分析,结果表明,454高通量测序技术在读长上的优势并未体现出来,而Illumina单端高通量测序技术优于454高通量测序技术.  相似文献   

11.
对低浓度硫代硫酸钠溶液用于较小生化耗氧量值的测定作了研究。实验结果表明,本法在保证测定溶解氧含量准确度的同时,使精密度较标准方法有非常显著的提高,同时也使生化耗氧量测定法的检测限降低到0.080mg/L,而方法的精密度还符合标准方法的要求,扩大了标准方法的使用范围。  相似文献   

12.
湿法烟气脱硫环境下亚硫酸钙强制催化氧化的研究   总被引:1,自引:0,他引:1  
采用机械搅拌槽式反应器,对湿法烟气脱硫环境进行模拟以研究锰催化对亚硫酸钙氧化的影响。实验得出:湿法烟气脱硫环境下,当槽内亚硫酸钙浆液浓度很小时,锰离子催化氧化对SIV浓度是1.5级,对Mn2+浓度是0.5 级;随着亚硫酸钙浆液增加至某一浓度后,氧化反应开始遵循并行反应机理,即氧化反应包括SIV离子的非催化氧化反应和SIV离子的锰离子催化氧化反应,且锰离子的催化氧化反应对Mn2+浓度是0.5级。文中提出的氧化反应速率的试验公式可以用来对湿法烟气脱硫中的氧化过程进行模拟。  相似文献   

13.
林涛  苑宇杰 《环境科学》2024,45(3):1553-1560
研究了紫外光活化亚硫酸盐高级氧化工艺降解水中典型新污染物——卡马西平(CBZ)的效能和降解机制.探究了不同溶解氧浓度[ρ(DO)]对紫外光活化亚硫酸盐降解CBZ的影响,并在模拟自然水体环境控制初始ρ(DO)为(8.0±0.2) mg·L-1条件下,考察了不同工艺参数(亚硫酸盐投加量、反应pH)与水环境要素(碳酸氢根离子、氯离子、腐殖酸)对CBZ降解效能的影响.结果表明,紫外光活化亚硫酸盐工艺可在30 min内降解85.3%的CBZ,降解过程遵循拟一级动力学,动力学常数为0.055 7 min-1.并采用电子顺磁共振波谱技术、活性物质淬灭实验和竞争反应动力学实验发现,CBZ的降解主要来自紫外光活化亚硫酸盐工艺中硫酸根自由基(SO4-·)与羟基自由基(·OH)等活性物质,且降解贡献率分别为43.9%和56.1%.而且CBZ降解率随HCO3-浓度升高而降低,但Cl-浓度变化对CBZ降解率影响不大,水中存在的腐殖酸可显著抑制CBZ的降解.反应过程中硫酸盐的积累量显著低于《生活饮用水卫生标准》(GB 5749-2022)限值,且亚硫酸盐消耗速率(0.004 4 min-1)显著低于CBZ的降解速率,说明亚硫酸盐可被紫外光高效活化用于降解水中存在的CBZ.  相似文献   

14.
以阳离子型微乳液CPC/正戊醇/正已烷/水为介质,进行了α-TNT-Na2SO3分光光度法的研究(ε=3.065×104L·mol-1·cm-1)与以CPC为介质(ε=2.644×104L·mol-1·cm-1)比较,测定灵敏度明显提高,α-TNT在0.05~20μg/mL范围内符合比耳定律.相对标准偏差0.197%.该法成功地应用于污染土壤中及合成水样中α-TNT的测定.  相似文献   

15.
16.
水中磷酸盐含量往往需要现场即时测定。通过研制一种测试管 ,从而能简便、快速的现场测定水中的磷酸盐。化学法测定时间需要 3~ 5h ,而该测试管法仅需 2~ 5min。分析成本大为降低  相似文献   

17.
对水中总磷、总氮的分析方法进行了部分改进,采用联合消解-混合标液法同时测定水中总磷、总氮,取得较好效果。  相似文献   

18.
水中苦味酸的测定   总被引:3,自引:0,他引:3  
将水样中的苦味酸氯化后,用ECD气相色谱法测定氯化苦的量,来确定苦味酸的浓度。采用保留时问定性,外标法定量。实验表明,该方法能快速有效地提取并测定水体中的苦味酸。在HP-5毛细管柱上,对苦味酸的氯化产物有较好的分离效果。方法快速、反应较为彻底,灵敏度高、精密度和准确度较好。  相似文献   

19.
水中阴离子表面活性剂的测定   总被引:12,自引:1,他引:12  
偶氮红两相滴定法在pH=7.5的条件下,能测定水和废水中的各种阴离子表面活性剂的摩尔浓度。本文通过对硫酸盐、磺酸盐、苯磺酸盐、肥皂和磷酸盐等各类阴离子表面活性剂的测定,以及干扰试验和实际水样测定,表明此法优于亚甲基蓝分光光度法。方法的变异系数为1.0%(n=11),最小检出浓度0.052mg/L(n=21),加标回收率92.1%-110.2%,平均100.6%(n=14)。建议水中阴离子表面活性剂  相似文献   

20.
利用吹扫捕集测量水和废水中氯乙烯检出限低,无溶剂污染,干扰少,结果准确,操作快捷方便。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号