首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
间歇式活性污泥反应器内短程同步硝化反硝化的研究   总被引:2,自引:2,他引:0  
以絮状活性污泥为种泥,以模拟城市生活污水为处理废水,在间歇式活性污泥反应器(SBR)内进行污泥的驯化和培养,通过控制运行条件在SBR内成功实现了NO2-N的积累和短程同步硝化反硝化。实验结果表明,NO2-N积累阶段,控制温度(31±1)℃、曝气量40~45L/h、污泥泥龄9—15d,SBR内NO2-N积累率可达95%-96%。培养成熟的好氧颗粒污泥平均粒径为3—5mm,用其进行短程同步硝化反硝化实验,一个反应周期5h结束后SBR出水的COD,NO2-N,TN去除率分别达92%,95%,85%。  相似文献   

2.
用改进聚乙烯醇-硼酸法将活性污泥制成固定化颗粒,考察了改进聚乙烯醇-硼酸法的最佳条件及固定化颗粒的性能。实验结果表明:改进聚乙烯醇-硼酸法的最佳条件为聚乙烯醇质量分数6.5%、包泥比(包埋剂与活性污泥质量比)1.2:1、二氧化硅质量分数1.5%、活性炭质量分数0.3%、海藻酸钠质量分数0.6%;用最佳条件下制得的固定化颗粒处理模拟化工废水,连续运行15d后的COD去除率达90%以上,且固定化颗粒耐冲击负荷和pH变化能力强;固定化颗粒对模拟化工废水的COD去除速率随进水COD的变化曲线类似于米氏方程所描述的反应初速度随底物浓度的变化规律。  相似文献   

3.
研究了高盐条件下的活性污泥驯化工艺,比较了驯化活性污泥与未经驯化活性污泥对废水中有机氯化物的去除效果。研究结果表明,经驯化后,活性污泥的理化指标发生了改变,对水中丙酮的去除率平均为68.3%,对二氯乙烷的去除率平均为83.0%,均优于未经驯化的活性污泥。这说明在合适的条件下,活性污泥经过耐盐驯化后可提高微生物对水中含氯有机物的适应能力,提高含氯有机物的去除效果。  相似文献   

4.
亚硝化细菌的筛选及培养条件的研究   总被引:1,自引:0,他引:1  
张辉  李培军  胡筱敏  王新 《化工环保》2006,26(5):366-369
从活性污泥中分离出16株亚硝化细菌,筛选出亚硝酸盐氮积累速率较高的两株菌Y8和Y16,初步鉴定Y8菌株为亚硝化球菌(Nitrosococcns.sp),Y16菌株为亚硝化单胞菌(Nitrosomonas.sp),并对其生长曲线进行了测定。通过氨氮去除率或业硝酸盐氮的质量浓度来验证亚硝化细菌的活性,考察了生成的亚硝酸盐氮的质量浓度与培养时间的关系、亚硝化细菌的活性与培养温度的关系、亚硝化细菌的活性与培养基pH的关系。Y8和Y16菌株在30℃、培养基pH为7.5、130r/min的条件下振荡培养5d,氨氮去除率分别为81.12%,75.36%。  相似文献   

5.
链霉菌(Streptomyces sp.)对吡啶的降解特性   总被引:2,自引:0,他引:2  
从焦化废水的活性污泥中分离出对溶液中吡啶具有降解效果的链霉菌(Streptomyces sp.),考察了吡啶初始质量浓度、初始pH、降解温度、振荡速度等对吡啶降解效果的影响,初步探讨了该菌降解吡啶的动力学与机理。实验结果表明,该菌对吡啶有很强的耐受力,能以吡啶为惟一碳源和氮源生长。链霉菌在初始pH=8、降解温度30℃、振荡速度100r/min的条件下培养7d后,吡啶的质量浓度从250mg/L降至6.6mg/L,吡啶降解率达97.4%。该菌对吡啶的降解反应符合一级动力学方程,初始质量浓度为100mg/L时的吡啶降解速率常数为0.4011d^-1。紫外一可见光谱分析表明,吡啶经该菌降解后的特征环被破坏。  相似文献   

6.
从活性污泥和受苯酚污染的土壤中分离出的菌株XA05和FG03均具有很强的苯酚生物降解能力。16srDNA序列分析表明,XA05和FG03菌株分别属于不动杆菌属(Acinetobacter sp.)和鞘氨醇单胞菌属(Sphin-gomonas sp.)。实验结果表明,在苯酚初始质量浓度为800.0mg/L、培养时间为35h的条件下,自由悬浮细胞和固定化细胞的苯酚降解率均高于95.0%。  相似文献   

7.
生物活性炭法吸附降解正十六烷的研究   总被引:1,自引:1,他引:0  
李安婕  刘红  王文燕  张丹  祝威 《化工环保》2005,25(4):259-262
以正十六烷为目标物,研究了生物活性炭(BAC)系统对正十六烷的吸附特征、生物吸附动力学以及活性炭的生物再生能力。研究结果表明:使用颗粒活性炭吸附正十六烷可行且具有较强的抗冲击负荷能力,等温吸附方程为a=74.088c^0.49;生物活性炭法比活性污泥法对正十六烷的降解速率快,且适合长期高浓度运行使用;经过14d培养后,吸附了正十六烷的活性炭的生物再生率可达到50.7%。  相似文献   

8.
循环活性污泥法处理丙烯腈废水   总被引:1,自引:1,他引:0  
孙剑辉  李萍 《化工环保》2005,25(5):364-367
采用循环活性污泥法处理模拟丙烯腈废水,探讨了丙烯腈的微生物降解机理。实验结果表明:在进水1h、厌氧1h、曝气4h、沉淀1h的处理条件下,处理后丙烯腈质量浓度由71mg/L降至4.4mg/L,去除率为93.8%COD由546mg/L降至49mg/L,去除率为91%。用扫描电子显微镜观察反应器中的活性污泥,发现八叠球菌、诺卡氏菌、链球菌为其主要菌群。  相似文献   

9.
采用序批式反应器(SBR)处理模拟精对苯二甲酸(PTA)废水,考察了曝气量、沉降时间、进水方式等对对苯二甲酸(TA)生物降解效果的影响。实验结果表明,对于TA质量浓度小于1500mg/L的废水,采用完全曝气SBR运行4h,TA和COD的去除率均能达到95%以上,TA平均去除速率随TA浓度的增加而增大。TA质量浓度为1500mg/L时,曝气量、沉降时间和进水方式是影响其降解效果的主要因素。采用SBR处理高浓度PTA废水可克服污泥膨胀和抗冲击负荷能力弱的问题,且系统的稳定性和PTA废水的处理效果较好。  相似文献   

10.
活性艳蓝KN-R染料废水的电解氧化及其毒性削减   总被引:2,自引:1,他引:1  
以Ti/RuO-IrO2为阳极、不锈钢板为阴极,采用电解法处理活性艳蓝KN—R染料废水(简称染料废水)。研究了电解过程中主要因素对染料废水色度去除率的影响,并对处理后废水的生物毒性和可生物降解特性进行了评估。结果表明:在pH为8、NaCl溶液浓度为0.050mol/L、电流密度为10.42mA/cm2、极板距离为3cm的条件下,电解15min染料废水色度去除率达100%;电解120min后,水样的发光细菌相对发光度提高至60.88%,活性污泥耗氧速率常数较原水提高了103%,说明染料废水的毒性得到了有效削减,可生化性得到明显改善。  相似文献   

11.
This work focused on anaerobic biodegradation of blends composed of glycerol-plasticized polyvinyl alcohol (PVA) and biopolymer (starch, gellan, xanthan) in an aqueous environment, after inoculation with digested activated sludge from a municipal wastewater treatment plant. Glycerol degradability is comparable to degradability of used modifying agents. Modifying agents added in the 20–40 wt% range proportionally increased biodegradation degree (Dt) calculated from balance of transformed carbon in the system. Biodegradation degree of polysaccharides and glycerol attained 95% and over. For PVA it was only 6.5% (in breakdown times up to 500 h). Content of polysaccharides favorably affects biodegradation degree of polyvinyl alcohol blends, but at the expense of reduced mechanical properties of resultant products.  相似文献   

12.
Mater-Bi: Properties and biodegradability   总被引:1,自引:0,他引:1  
This paper examines the biodegradability of a new class of materials based on starch and vinylalcohol copolymers, which have been commercialized under the Mater-Bi trademark. Particular attention is given to the biodegradation process for natural and synthetic components of different Mater-Bi grades for film blowing in an aerobic respirometric test, in a SCAS (semicontinuous activated sludge) test, and by submersion in lake water. The correlation between morphology and biodegradation behavior is also considered. Taking into account the prior art on biodegradation of insoluble substrates, a two-step mechanism is proposed for Mater-Bi products.  相似文献   

13.
Wastewater contains varieties of carbonaceous and nitrogenous compounds that undergo complicated biodegradation processes in wastewater treatment plants. How these different compounds are degraded by activated sludge in aerobic conditions is still a mystery. Researchers have been trying to interpret it using the oxygen uptake rate (OUR) derived from the respirograms of respective substrates. Several models have been proposed to interpret the substrate removal mechanisms using the experimental observations. Have we succeeded in understanding the messages by activated sludge correctly using these models? In this paper, the distinctive nature of the respirograms when activated sludge is fed with different substrates and the biokinetic models that have been developed to explain the substrate removal mechanisms using derived OUR profiles are reviewed. In addition, a sensitivity study was conducted on the recently evolved simultaneous storage and growth model to investigate the influence of key parameters on OUR profiles during the biodegradation process.  相似文献   

14.
The presented work deals with blends composed of polyvinyl alcohol (PVA) and biopolymers (protein hydrolysate, starch, lignin). PVA does not belong to biologically inert plastics but its degradation rate (particularly under anaerobic conditions) is low. A potential solution to the issue problem lies in preparation of blends with readily degradable substrates. We studied degradation of blow-molded films made of commercial PVA and mentioned biopolymers in an aqueous anaerobic environment employing inoculation with digested activated sludge from the municipal wastewater treatment plant. Films prepared in the first experimental series were to be used for comparing biodegradation of blends modified with native or plasticized starch; in this case effect of plasticization was not proved. The degree of PVA degradation after modification with native or plasticized starch increases in a striking and practically same manner already at a starch level as low as approximately 5 wt.%. Films of the second experimental series were prepared as additionally modified with protein hydrolysate and lignin. Only lignin-modified samples exhibited a somewhat lower degree of biodegradation but regarding the measure of lignin present in blend this circumstance is not essential. Level of biodegradation with all discussed films differed only slightly—within range of experimental error.  相似文献   

15.
Biodegradable polymers generally decompose in the various media in our environments. These environments contain soils, seawater, and activated sludge. If biodegradable materials waste is discarded, they decompose in these media. The biodegradation process of biodegradable polymers was investigated by scanning electron microscopy. Polycaprolactone, polybutylene succinate, and P(3HB-co-3HV) were tested. The shapes of holes on the decomposing surfaces are different according to the biodegradation media. Semispherical holes are observed on the surfaces of polybutylene succinate films degraded in activated sludge and cracks are observed on the surfaces of polycaprolactone films degraded in soil.  相似文献   

16.
In our previous work, the primary sludge from wastewater treatment plants was shown to contain a considerable amount of cellulose (about 20%, based on suspended solids) owing to the discharge of toilet paper. For the purpose of using the cellulose as a biomass resource, this study examined a simple method for its recovery. When fibrous cellulose was suspended in 0.3% sulfuric acid and autoclaved at 130°C for 60 min, 85%–88% of the initial solids remained without dissolving. Under these conditions, an activated sludge sample not containing cellulose was strongly hydrolyzed and only 7% of the initial solids remained. The prescribed amounts of cellulose added to the activated sludge sample were quantitatively recovered by the autoclaving treatment. In the treatment of primary sludge containing >20% cellulose, residual solids with relatively high levels of cellulose (>69%) could be obtained. The results indicate that the method proposed here could recover cellulose practically from waste sewage sludge for biomass utilization. Received: July 17, 2000 / Accepted: July 4, 2001  相似文献   

17.
The anaerobic biodegradation rates of four different sizes of poly (lactic acid) (PLA) films (thickness 25???m) in anaerobic sludge at 55?°C were examined. The anaerobic biodegradation rates of small pieces of PLA film were slower than for large pieces of PLA film. We also examined whether PLA film could also be used as a reference material in the anaerobic biodegradation test in addition to PLA powder. The anaerobic biodegradation rate of PLA film became slower with lower activity sludge, but the rate of decrease was gradual, and the anaerobic biodegradation rate of PLA film was faster than the PLA powder (125?C250???m). The anaerobic biodegradation rate of the PLA powder (125?C250???m) reflected the plastic anaerobic biodegradation activity of the sludge more accurately than the thin PLA film (thickness 25???m). Consequently, PLA powder (125?C250???m) is more suitable than thin PLA film (thickness?<?25???m) for use as a reference material to assess the plastic anaerobic biodegradation activity of the sludge in an anaerobic biodegradation test at 55?°C.  相似文献   

18.
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.  相似文献   

19.
Plastic blend materials consisting of poly(vinyl alcohol), glycerol and xanthan or gellan were prepared through laboratory extrusion. Their base mechanical properties were compared with the properties of poly(vinyl alcohol) foil and their biodegradability in soil, compost and both activated and anaerobic sludge were assessed. In samples with lower polysaccharide content (10–21 %w/w) the tensile strength of 15–20 MPa was found; the elongation at break of all blends was relatively close to the parameter of poly(vinyl alcohol) foil. The biodegradability levels of the blends tested corresponded to the content of natural components, and the mineralization of the samples with the highest carbohydrate proportion (42 %) reached 50–78 %, depending on the type of the environment. Complete biodegradation of all samples occurred in activated sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号