共查询到20条相似文献,搜索用时 15 毫秒
1.
Linbo Wu Yan Zhang Hong Fan Zhiyang Bu Bo-Geng Li 《Journal of Polymers and the Environment》2008,16(1):68-73
As an attempt to synthesize new biodegradable polymers from renewable cellulose resources, melt polycondensation of 5-hydroxylevulinic
acid (5-HLA) was reported for the first time. The resulting product, poly(5-hydroxylevulinic acid) (PHLA), was synthesized
and characterized with GPC, FTIR, 1H NMR and DSC. The in vitro degradation behaviors in phosphate-buffered saline (PBS) and in deionized water (DW) were also
examined. The molecular weight of PHLA is not high (several 1,000s), but it possesses unordinary high glass transition temperature
(as high as 120 °C). This is very different from existing aliphatic polyesters that usually have T
gs lower than 60 °C. The high T
g is attributed to the formation of inter- and/or intramolecular hydrogen bonds due to a characteristic keto–enol tautomerism
equilibrium in the polymer structure. PHLA readily degraded hydrolytically in aqueous media. 相似文献
2.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption. 相似文献
3.
Journal of Polymers and the Environment - The objective of this work was to prepare a maleate epoxidized natural rubber (MENR) and poly(vinyl alcohol) (PVA) (MENR/PVA) blend in the presence of... 相似文献
4.
A Literature Review of Poly(Lactic Acid) 总被引:32,自引:0,他引:32
Donald Garlotta 《Journal of Polymers and the Environment》2001,9(2):63-84
A literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA). Poly(lactic acid) exists as a polymeric helix, with an orthorhombic unit cell. The tensile properties of PLA can vary widely, depending on whether or not it is annealed or oriented or what its degree of crystallinity is. Also discussed are the effects of processing on PLA. Crystallization and crystallization kinetics of PLA are also investigated. Solution and melt rheology of PLA is also discussed. Four different power-law equations and 14 different Mark–Houwink equations are presented for PLA. Nuclear magnetic resonance, UV–VIS, and FTIR spectroscopy of PLA are briefly discussed. Finally, research conducted on starch–PLA composites is introduced. 相似文献
5.
Letian Wang Zhaohui Tong Lonnie O. Ingram Qingzheng Cheng Siobhan Matthews 《Journal of Polymers and the Environment》2013,21(3):780-788
Twin-screw extrusion was used to prepare the composites consisting of PLA and three types of sugarcane bagasse residues (up to 30 wt%) derived from different steps of a biorefinery process. Each residue had different composition, particle size and surface reactivity due to chemical and biological (enzyme, microbes) treatments that the biomass was subjected to. The effects of different residue characteristics on properties, crystallization behaviors and morphologies of PLA composites were investigated. Besides, a small amount (2 wt%) of coupling agent, Desmodur® VKS 20 (DVKS), was used to improve the interfacial bonding between PLA and bagasse residues. The results indicated that in the presence of 2 % DVKS, PLA composite with pretreated residue exhibited the maximum strength properties (98.94 % tensile strength and 93.91 % flexural strength of neat PLA), while PLA composite with fermentation residue exhibited the minimum strength properties (88.98 % tensile strength and 81.91 % flexural strength of neat PLA). 相似文献
6.
Qirui Sun Tizazu Mekonnen Manjusri Misra Amar K. Mohanty 《Journal of Polymers and the Environment》2016,24(1):23-36
Poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) blends with different levels of chain extender were prepared and cast into films. The effect of chain extender on the mechanical, thermal and barrier properties of the films were investigated. With the inclusion of the chain extender, the compatibility and interfacial adhesion between the two polymer phases were significantly improved by a mean of forming a PLA–chain extender–PPC copolymer. Reactions between the chain extender, PLA and PPC were observed through FTIR study. SEM study also confirmed the improved compatibility and interfacial adhesion. The elongation at break of the compatibilized film with optimal amount of chain extender showed dramatic increase by up to 1940 %. DSC studies revealed that chain extender hindered the crystallization of the film which explained the decrease in both water and oxygen barrier when adding chain extender. PLA was found to be able to enhance both oxygen and water barrier of the blend as compared to neat PPC, while in the case of the blend with chain extender, oxygen and water barrier properties exhibited reduction at the beginning. However, when increasing chain extender concentration, these two barrier performance exhibited an upward trend. It was found that PLA/PPC blend showed much better oxygen barrier property than both parent polymers, which can be ascribed to the acceleration effect of PPC on the crystallization of PLA. 相似文献
7.
This paper deals with a new application of poly 3-methyl thiophene synthesized chemically onto sawdust (termed as P3MTh/SD)
as an effective adsorbent for removal of Cr(VI) ions from aqueous solutions using column system. Chemical synthesis of poly
3-methyl thiophene was performed by addition of ferric chloride (in chloroform) as oxidant to sawdust which had previously
been soaked in monomer solution. All the sorption experiments were conducted using dynamic or column system at room temperature.
The effect of important parameters such as pH and initial concentration on uptake of Cr(VI) was investigated. In order to
find out the possibility of the regeneration and reuse of the exhausted adsorbent, desorption studies were also performed.
The currently introduced adsorbent was found to be an efficient adsorbent for removal of highly toxic and hazardous Cr(VI)
ions from aqueous solutions. As our breakthrough analysis has indicated, each gram of P3MTh/SD is able to remove more than
95% of Cr(VI)ions from 300 mL of Cr(VI) polluted solution with the initial concentration of 25 mg L−1 in column system. Sorption/desorption of Cr(VI) ions was found to be a highly pH dependent processes. 相似文献
8.
Nur Zahidah Rozaki Seng-Neon Gan Desmond Teck-Chye Ang 《Journal of Polymers and the Environment》2017,25(2):286-295
Oil-modified polyesters were synthesized to serve as polymeric plasticizers for PVC. A total of four polymeric plasticizers with different average molecular weights were prepared. Characterizations were done using Fourier-transformed infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. Some of the tests conducted on PVC films include thermal stability test using thermogravimetric analyser, determination of glass transition temperature (Tg), plasticizer migration and leaching resistance test, morphology study of plasticized PVC films using field emission scanning microscope, toxicity test, and tensile test. Owing to the plasticizing effect of the palm oil-based compound, Tg of the plasticized PVC has decreased to an average of 65 °C at 20 wt% loading. The polymeric plasticizer is also able to contribute positively to the thermal stability and mechanical properties of the PVC films. Some of the advantages of incorporating polymeric plasticizer with high molecular weight includes lower rate of leaching from plastic, and improved tensile strength and elongation at break. Besides, thermal stability of the plastic studied using Kissinger’s and Flynn–Wall–Ozawa’s approaches shows that PVC blended with high molecular weight oil-modified polyester is more thermally stable, evidenced by the increase in the activation energy of decomposition, Ed. Toxicity test using brine shrimp egg shows encouraging results, where the oil-based plasticizer is considerably less toxic compared to some of the commercial plasticizers. 相似文献
9.
Tong Huang Motohiro Miura Shogo Nobukawa Masayuki Yamaguchi 《Journal of Polymers and the Environment》2014,22(2):183-189
Effect of the addition of poly(ethylene glycol) terminated by benzoate (PEG-BA) on the crystallization behavior and dynamic mechanical properties of poly(l-lactic acid) PLLA is studied as compared with poly(ethylene glycol) (PEG-OH). It is found that PEG-BA is miscible with PLLA and shows good plasticizing effect. Because PEG-OH having the same degree of polymerization is immiscible with PLLA, the end group in PEG-BA, i.e., benzoate, plays an important role in the miscibility. Furthermore, PEG-BA does not induce the PLLA degradation at melt-processing, whereas PEG-OH leads to the hydrolysis degradation. Finally, the addition of PEG-BA pronounces the crystallization rate of PLLA at low crystallization temperatures and thus enhances the degree of crystallinity at conventional processing. Consequently, the temperature dependence of dynamic mechanical properties are similar to that for isotactic polypropylene. 相似文献
10.
Nugraha E. Suyatma Alain Copinet Lan Tighzert Veronique Coma 《Journal of Polymers and the Environment》2004,12(1):1-6
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA. 相似文献
11.
Fourier transform infrared microscope and confocal Raman spectroscope were employed in this study to investigate four kinds of biodegradable plastics: poly(lactic acid),poly(butylenes adipate-co-terephthalate), poly(butylenes succinate) and poly(hydroxybutyrate-co-hydroxyvalerate), which are used more and more popularly in everyday life but can not be identified easily with other instruments. Infrared and Raman spectra of the plastics were tentatively interpreted. The indicative peaks to characterize the four polymers were also summarized. The result in this study can help the forensic scientists discriminate the plastics accurately when they occurred as trace evidences in cases, it also offers the producer and environment scientists an effective, non-invasive and fast method to characterize and identify these four polymers. 相似文献
12.
Yuling Zhang Hanxiao Wei Yijian Jiang Shaoxin Kang Zhiguang Hu Jilong Wang 《Journal of Polymers and the Environment》2018,26(1):116-121
Poly(aspartic acid-itaconic acid) copolymers (PAI) is a new scale inhibitor for water treatment. Thus, it is necessary to investigate its biodegradability. The biodegradability of PAI was investigated through CO2 evolution tests under different conditions based on determination of carbon dioxide production. The investigation results showed that the degradation rate of PAI on day 10 and day 28 were respectively 38.7 and 79.5%, indicating that PAI was one kind of easily biodegradable scale inhibitors. With the increase in the content of itaconic acid in copolymerization process, the biodegradability of PAI was significantly reduced. In addition, the high biodegradability might be attributed to the existence of C–N bone-structure and more –COO–. Finally, Cu2+ could decrease the degradation percentage and the enzyme inhibition effect of Cu2+ was not the linear effect, but the “low-dosage effect”. 相似文献
13.
Márcia Maria Favaro Ferrarezi Márcia de Oliveira Taipina Laura Caetano Escobar da Silva Maria do Carmo Gonçalves 《Journal of Polymers and the Environment》2013,21(1):151-159
A new route to prepare poly(lactic acid) (PLA)/thermoplastic starch (TPS) blends is described in this work using poly(ethylene glycol) (PEG), a non-toxic polymer, as a compatibilizer. The influence of PEG on the morphology and properties of PLA/TPS blends was studied. The blends were processed using a twin-screw micro-compounder and a micro-injector. The morphologies were analyzed by scanning and transmission electron microscopies and the material properties were evaluated by dynamic-mechanical, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. PLA/TPS blends presented large TPS phase size distribution and low adhesion between phases which was responsible for the lower elastic modulus of this blend when compared to pure PLA. The addition of PEG resulted in the increase of PLA crystallization, due to its plasticizing effect, and improvement of the interfacial interaction between TPS and PLA matrix. Results show that incorporation of PEG increased the impact strength of the ternary blend and that the elastic modulus remained similar to the PLA/TPS blend. 相似文献
14.
Poly(lactic acid) is the subject of considerable commercial development by a variety of organizations around the world. In this work, the thermal and rheological properties of two commercial-grade poly(lactic acid)s (PLAs) are investigated. A comparison of the commercial samples to a series of well-defined linear and star architecture PLAs provides considerable insight into their flow properties. Such insights are valuable in deciding processing strategies for these newly emerging, commercially significant, biodegradable plastics. Both a branched and linear grade of PLA are investigated. The crystallization kinetics of the branched polymer are inferred to be faster than the linear analog. Longer relaxation times in the terminal region for the branched material compared to the linear material manifests itself as a higher zero shear rate viscosity. However, the branched material shear thins more strongly, resulting in a lower value of viscosity at high shear rates. Comparison of the linear viscoelastic spectra of the branched material with the spectra for star PLAs suggests that the branched architecture is characterized by a span molecular weight of approximately 63,000 g/mol. The present study conclusively demonstrates that a wide spectrum of flow properties are available through simple architectural modification of PLA, thus allowing the utilization of this important degradable thermoplastic in a variety of processing operations. 相似文献
15.
Polymers that can separate toluic acid isomers were synthesized by molecular imprinting technique. Molecular imprinting polymers (MIPs) for each isomer of toluic acids (TA) were synthesized using styrene and 4-vinylpyridine (4-Vpy). The adsorption characteristics of TA isomers, salicylic acid (SA), and benzoic acid (BA) on each MIP were investigated. The materials used for polymerization of TA isomers MIPs were adsorbed relatively well. This verifies that the MIPs which can adsorb template selectively were synthesized. In addition, the quantities of adsorbed TA isomers on the TA isomers MIPs and on the control polymer polymerized without template were compared and discussed. The variation of adsorption ability for MIPs with repeated use was investigated, showing excellent reproducibility. 相似文献
16.
D’souza Oshin Jacintha Hiremani Vishram D. Gasti Tilak Goudar Naganagouda L Varsha S. Masti Saraswati P. Mudigoudra Bhagyavana S. Malabadi Ravindra B. Chougale Ravindra B. 《Journal of Polymers and the Environment》2022,30(7):2888-2904
Journal of Polymers and the Environment - In this study eco-friendly composite films were prepared based on poly(vinyl alcohol) (PVA) containing different content of Basella alba stem extract (BA)... 相似文献
17.
Nita Tudorachi Rodica Lipsa Cornelia Vasile Fanica Mustata 《Journal of Polymers and the Environment》2013,21(4):1064-1071
The synthesis and characterization of poly(lactic acid)-co-aspartic acid copolymers (PLA-co-Asp) were presented. Subsequently, the synthesized PLA-co-Asp copolymers were tested as biodegradable carriers in drug delivery systems. PLA-co-Asp copolymers were synthesized by solution polycondensation procedure, using different molar ratios PLA/l-aspartic acid (2.33/1, 1/1, 1/2.33), manganese acetate and phosphoric acid as catalysts and N,N′-dimethyl formamide (DMF)/toluene as solvent mixture. The copolymers were characterized by FT-IR and 1H-NMR spectroscopy, gel permeation chromatography (GPC), DSC and TG-DTG analyses. Diclofenac sodium, a non steroidal anti-inflammatory drug was subsequently loaded into PLA-co-Asp copolymers. The in vitro drug release experiments were done by dialysis of the copolymer/drug systems, in phosphate buffer solution (pH = 7.4, at 37 °C) and monitored by UV spectroscopy. 相似文献
18.
Wannapa Chumeka Varaporn Tanrattanakul Jean-François Pilard Pamela Pasetto 《Journal of Polymers and the Environment》2013,21(2):450-460
Natural rubber grafted with poly(vinyl acetate) copolymer (NR-g-PVAc) was synthesized by emulsion polymerization. Three graft copolymers were prepared with different PVAc contents: 1 % (G1), 5 % (G5) and 12 % (G12). Poly(lactic acid) (PLA) was melt blended with natural rubber (NR) and/or NR-g-PVAc in a twin screw extruder. The blends contained 10–20 wt% rubber. The notched Izod impact strength and tensile properties were determined from the compression molded specimens. The effect of NR mastication on the mechanical properties of the PLA/NR/NR-g-PVAc blend was evaluated. Characterization by DMTA and DSC showed an enhancement in miscibility of the PLA/NR-g-PVAc blend. The temperature of the maximum tan δ of the PLA decreased with increasing PVAc content in the graft copolymer, i.e., from 71 °C (pure PLA) to 63 °C (the blend containing 10 % G12). The increase in miscibility brought about a reduction in the rubber particle diameter. These changes were attributed to the enhancement of toughness and ductility of PLA after blending with NR-g-PVAc. Therefore, NR-g-PVAc could be used as a toughening agent of PLA and as a compatibilizer of the PLA/NR blend. NR mastication was an efficient method for increasing the toughness and ductility of the blends which depended on the blend composition and the number of mastications. 相似文献
19.
A. M. Issam Sufia Hena A. K. Nurul Khizrien 《Journal of Polymers and the Environment》2012,20(2):469-476
The new unsaturated poly(ester-urethane) was synthesized by the reaction of 4,4??-methylenediphenyldiisocyanate with 4,4??-di(2,3-butenhydroxyl) terephthalate in the ratio of 1:1. 4,4??-di(2,3-butenhydroxyl) terephthalate was first prepared by reacting 2?mol of cis-2-butene-1, 4-diol with 1?mol of terephthalic acid. The terephthalic acid used was derived from the recycling of PET bottles via subjection to saponification process. The synthesized compounds were characterized by CHN analysis, FT-IR, 1H NMR and UV?CVis spectroscopy, with consistency of results showing the presence of the new unsaturated poly(ester-urethane) II. Thermal properties of the new polymer was verified by differential scanning calorimetry and thermogravimetric analysis, whereas the mechanical properties were characterized by tensile, elongation, hardness, adhesion and impact testing. The electrical conductivity and the electrical resistance of the compound were observed with increasing applied voltage. 相似文献
20.
The main purpose of this study is challenging to dramatically improve the toughness of poly(lactic acid) (PLA)/starch by adding poly (ethylene glycol) (PEG) into the composites and grafting PEG molecules onto the surface of starch particles. It was found that the surface grafting of PEG onto starch induced the presence of PEG-rich regions located around the starch particles, caused by migration and aggregation of free PEG molecules. A novel interphase transition layer between PLA and starch was formed, which showed great ability for cavitation and vested large-scaled plastic deformation to PLA matrix. Further mechanical properties tests indicated the formation of interphase layer significantly increase the elongation at break from 10.2 to 254.5%, and notched impact strength from 1.56 to 2.37?kJ/m2 for PLA/PEG/starch ternary composites. The influence of PEG component, ethanol extraction and annealing was also investigated. 相似文献