首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carboxymethyl Cellulose (CMC)/Sodium alginate (SA) blends have been prepared by casting solution method. The effect of different irradiation doses (2.5, 5, 10, 15, and 20 kGy) of gamma rays on the physical properties of the CMC/SA blend containing different ratios of SA (20, 30, and 40 %) such as gel fraction (%) and swelling (%) of CMC/SA blends were investigated. It was found that the gel fraction increases with increasing irradiation dose up to 20 kGy while the swelling of CMC/SA blend films tends to increase with increasing SA content and reduced with increasing irradiation doses. Mechanical and thermal properties of the blend films were improved when CMC content increased and with increasing irradiation dose up to 20 kGy. Morphology of the blend was examined by SEM, which indicates compatibility between CMC and SA. The blend rich in SA content possessed good antimicrobial activity against Gram +ve Bacteria (Bacillus subtilis).  相似文献   

2.
The bioactive packaging polyvinyl alcohol (PVA)/starch films were prepared by incorporating combined antioxidant agents i.e. extracted spent coffee ground (ex-SCG) and citric acid. Effect of citric acid content on chemical compatibility, releasing of antioxidant, antibacterial activities, and physical and mechanical properties of PVA/starch incorporated ex-SCG (PSt-E) films was studied. The results of ATR-FTIR spectra showed that antioxidant agents of ex-SCG can penetrate into the film and the ester bond of blended films by citric acid was also observed. The presence of ex-SCG increased efficiency of antioxidant release and antimicrobial activity. The PSt-E film incorporated 30 wt% citric acid showed minimum inhibitory concentration against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The incorporation of ex-SCG and citric acid into film showed a synergistic effect on antibacterial activity. The water resistance and kinetic moisture sorption improved with incorporation of citric acid. The tensile strength and biodegradability of samples were in range of 5.63–7.44 MPa and 65.28–86.64%, respectively. Based on this study, PSt-E film incorporated 30 wt% citric acid can be applied as novel food packaging materials.  相似文献   

3.
The addition of plasticizers to biopolymer films is a good method for improving their physicochemical properties. The aim of this study was to evaluate the effect of chitosan (CHI) blended with two hydrophilic plasticizers glycerol (GLY) and sorbitol (SOR), at two concentrations (20 and 40 wt%) on their mechanical, thermal, barrier, structural, morphological and antimicrobial properties. The chitosan was prepared through the alkaline deacetylation of chitin obtained from fermented lactic from shrimp heads. The obtained chitosan had a degree of deacetylation (DA) of 84 ± 2.7 and a molecular weight of 136 kDa, which indicated that a good film had formed. The films composed of CHI and GLY (20 wt%) exhibited the best mechanical properties compared to the neat chitosan film. The percentage of elongation at break increase to over 700 % in the films that contained 40 % GLY, and these films also exhibited the highest values for the water vapor transmission rate (WVTR) of 79.6 ± 1.9 g m2 h?1 and a yellow color (b o  = 17.9 ± 2.0) compared to the neat chitosan films (b o  = 8.8 ± 0.8). For the structural properties, the Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses revealed an interaction in the acetamide group and changes in the crystallinity of plasticized films. The scanning electron micrographs revealed that all formulations of the chitosan films were smooth, and that they did not contain aggregations, pores or microphase separation. The thermal analysis using differential scanning calorimetry (DSC) revealed a glass transition temperature (Tg) of 130 °C for neat chitosan film, but the addition of SOR or GLY elicited a decrease in the temperature of the peak (120 °C). In addition, the antimicrobial activity of the chitosan films was evaluated against Listeria monocytogenes, and reached a reduction of 2 log after 24 h. The plasticizer concentration of 20 % GLY is sufficient for obtaining flexible chitosan films with good mechanical properties, and it could serve as an alternative as a packaging material to reduce environmental problems associated with synthetic packaging films.  相似文献   

4.
The individual and interactive effects of glycerol and chitosan concentrations on edible film properties were investigated using response surface methodology. The results of ANOVA indicated that all the independent variables exhibited significant effect on the film properties. Chitosan concentration had a positive effect on CO2 permeability and negative effect on O2 while the glycerol concentration had a positive effect on permeability to both gases. Regarding water vapor permeability, the chitosan concentration had a negative effect, whereas the glycerol had no influence. Moreover, both chitosan and glycerol concentration influenced the elongation at break point (%A), and only glycerol concentration had a significant effect on tensile strength. Optimization by desirability approach was carried out on the independent variables to get the optimum levels within the experimental conditions. It was found that 1.5 % of chitosan and 25 % of glycerol (wt/wt of chitosan) retarded respiration and showed a strong permeability to water vapor.  相似文献   

5.
Chitosan (0.1–1%, w/w), dissolved in 2% acetic acid solution, was added into 1% methylcellulose (MC)-based formulation containing 0.5% vegetable oil, 0.25% glycerol and 0.025% Tween?80. Films were prepared by casting. Puncture strength (PS), puncture deformation (PD), viscoelasticity coefficient and water vapour permeability (WVP) of the films were measured. The PS value of 312 N/mm was observed for MC-based films containing 0.25% chitosan. Values of PD, viscoelasticity coefficient and WVP of these films were 5.0 mm, 44.1%, and 6.0 g mm/m2 day kPa, respectively. The MC-based films containing 0.25% chitosan were also exposed to gamma radiation (0.5–50 kGy). The PS of the treated films decreased significantly from 312 at 0 kGy to 201 N/mm when treated at a dose of 50 kGy. However, WVP values were not affected by increasing irradiation the dose used. The Fourier Transform Infrared spectroscopy supported the molecular interactions due to addition of chitosan in MC-based films. Thermo gravimetric analysis and differential scanning calorimetric experiments showed that thermal properties of the films were significantly improved by chitosan loading. Surface topography of the films was studied by scanning electron microscopy and found rougher due to chitosan addition.  相似文献   

6.
Vinyl acetate (VAc) monomer of different percentage was grafted onto the recycled polyethylene terephthalate (r-PET) films using gamma irradiation. The properties of these modified films were characterized by Fourier transform infrared spectroscopy (FTIR), mechanical properties testing (Tensile strength, Elongation at break), dynamic mechanical analysis (DMA) and thermo-gravimetric analysis (TGA). The Tensile Strength (TS) of the modified PET film increased by 132.25?% to the highest value of 50.12 MPa at 15% VAc monomer concentration at 3 kGy gamma dose, while the elongation at break (EB) decreased by 31.83?%. FTIR was used to investigate the molecular interaction of the modified films. TGA revealed that curve of the modified PET film shifted toward higher temperature region by 95?°C, which is very close to that of PET film made from virgin flakes. The results indicate that modified PET films of better mechanical and thermal properties were successfully prepared using VAc monomer grafting by gamma irradiation technique.  相似文献   

7.
Because environmental pollution caused by plastic waste is a major problem investigations concerning biodegradable packaging are important and required. In this study, the biodegradation of PCL composite films with organic (glycerol monooleate and oleic acid) and inorganic additives (organo nano clay) was investigated to understand which additive and the amount of additive was more effective for biodegradation. The relationship between the degree of crystallinity and the effect of additives on the biodegradability of polycaprolactone (PCL) was examined. PCL composite films were prepared using organo nano clay (0.1–0.4–1–3 wt%) and oleic acid (1–3–5 wt%) or GMO (1–3–5 wt%). The 35 films prepared with PCL (P), clay (C), oleic acid (O), or glycerol monooleate (G) are coded as P_C#wt%_O (or G)#wt%. The composite films, P_C0.4_O5 contains 0.4 wt% clay and 5 wt% oleic acid and the P_C3_G1 contains 3 wt% clay and 1 wt% glycerol monooleate. The biodegradation of PCL films in simulated soil was studied for 36 months. The films were periodically removed from the simulated soil and film thicknesses, weight losses, visual changes, crystal structures, and a functional group analyses were performed. PCL composite films are separated into three groups, depending on degradation time, (1) films that degraded before 8 months (fast degradation), (2) films that degraded around 24 months (similar to neat PCL), and (3) films that take longer to degrade (slow degradation). The films in the first group are PCL films with 1 and 3 wt% clay additive and they begin to biodegrade at the 5th month. However, a composite film of PCL with only 0.4 wt% clay and 5 wt% GMO addition has the shortest degradation time and degraded in 5 months. The films in the last group are; P_G3, P_G5, P_C0.1, P_C0.1_O1, and P_C0.1_O5 and they took around 30 months for biodegradation. It was observed that increasing the organo nanoclay additive increases the biodegradability by disrupting the crystal structure and causing a defective crystal formation. The addition of GMO with organo nano clay also accelerates biodegradation. The addition of organo nano clay in an amount as small as 0.1 wt% acts as the nucleating agent, increases the degree of crystallinity of the PCL composites, and slows the biodegradation period by increasing the time.  相似文献   

8.
Poly(lactic acid) (PLA) is a biodegradable polymer that exhibits high elastic modulus, high mechanical strength, and feasible processability. However, high cost and fragility hinder the application of PLA in food packaging. Therefore, this study aimed to develop flexible PLA/acetate and PLA/chitosan films with improved thermal and mechanical properties without the addition of a plasticizer and additive to yield extruder compositions with melt temperatures above those of acetate and chitosan. PLA blends with 10, 20, and 30 wt% of chitosan or cellulose acetate were processed in a twin-screw extruder, and grain pellets were then pressed to form films. PLA/acetate films showed an increase of 30 °C in initial degradation temperature and an increase of 3.9 % in elongation at break. On the other hand, PLA/chitosan films showed improvements in mechanical properties as an increase of 4.7 % in elongation at break. PLA/chitosan film which presented the greatest increase in elongation at break proved to be the best candidate for application in packaging.  相似文献   

9.
Hydrogels are in use for encapsulation of curcumin for possible use in wound healing. Encapsulation helps in targeted delivery and enhanced activity of curcumin. We report here a pH sensitive hydrogel developed from chitosan. The hydrogel was prepared by reaction of chitosan and d-glucose, facilitated by the reducing agent Na-cyanoborohydride. The maximum yield of the hydrogel was obtained at pH 4.5 with the amount of chitosan, d-glucose and Na-cyanoborohydride as 0.3, 2.0 and 2.0 g respectively. A maximum curcumin loading efficiency of 74% was observed with curcumin amount in the feed at 0.15 g. The release study revealed a sustained release pattern over a period of 80 h with an initial burst release. Curcumin loaded hydrogel showed mild antibacterial activity against Proteus mirabilis and Enterobacter aerogenes.  相似文献   

10.
Recent studies have demonstrated the antibacterial effect of micro and nanoparticles of chitosan (CS) crosslinked with sodium tripolyphosphate (TPP), and incorporating metallic ions, bringing that the size, shape, and zeta potential are related to the antimicrobial potential. However, there are few studies on the antifungal activity and the effect of TPP on the antimicrobial potential. Micro and nanoparticles were prepared from CS by ionotropic gelation with TPP, and structurally characterized by transmission and scanning electron spectroscopy, and Fourier transformed infrared spectroscopy. Depending on the concentration of CS and TPP, spherical particles were obtained from 80 nm to 20 μm. Subsequently, particles were evaluated for their antifungal potential against Aspergillus parasiticus assessing radial growth, spore germination, and morphological changes. An increase in the antifungal potential compared with CS in solution was observed, inhibiting the development of the fungus causing clear morphological changes in both, hyphae and spores. Particle size and the availability of functional groups of CS/TPP (amino group and phosphate), suggest a possible synergistic effect between CS and TPP.  相似文献   

11.
Chitosan, a natural polymer, was prepared by deacetylation of chitin which was obtained from dried prawn shell and was characterized. Thin chitosan film of chitosan was prepared by casting method from 0.2 % chitosan in 2 % acetic acid solution. Five formulations were developed with ethylene glycol dimethacrylate and (2-hydroxyethyl) methacrylate along with photo-initiator, Darocur-1664 (4 %). The chitosan film was soaked in the formulations at different soaking times and irradiated under UV-radiation at different intensities for the improvement of its physical and mechanical properties. The cured chitosan films were then subjected to various mechano-chemical tests like tensile strength, elongation at break, polymer loading, water absorption and gel content. The formulation containing 30 % ethylene glycol dimethacrylate and 66 % (2-hydroxyethyl) methacrylate showed the best performance at the 30th UV pass of UV-radiation for 3 min soaking time.  相似文献   

12.

In this study, the wheat gluten film was prepared. Heracleum persicum essence, magnesium oxide nanoparticles and polypyrrole were used to modify the structure of the wheat gluten film. Physicochemical properties of the prepared films such as thickness, solubility, moisture absorption ability, antioxidant properties, and electrical conductivity of the films were investigated. Also, the mechanical, structural and thermal properties of the films were investigated by techniques such as SEM, FTIR, XRD, TGA, DTA and tissue analysis. SEM images showed that the essence and polypyrrole strengthened the gluten film structure and made it more resistant to the passage of gases. FTIR spectra confirmed the electrostatic interactions between gluten and essence and polypyrrole. XRD spectra showed the amorphous structure of gluten film and its composites. The results of thermal analysis showed that polypyrrole greatly increased the thermal resistance of the film and the nanoparticles had little effect on the thermal resistance. Thickness, solubility, moisture content and ability to absorb moisture were further affected by the essential oil. The antioxidant and electrical conductivity of the film was greatly increased in the presence of all three additives of essence, magnesium oxide nanoparticles and polypyrrole. The gluten–essence–MgO–PPy (Glu–E–MgO–PPy) composite film had the most antioxidant properties. Glu–E–MgO–PPy film with important electrical conductivity and antioxidant properties has the potential to be used as an active and intelligent film in the packaging of perishable food products.

  相似文献   

13.
This research aimed to prepare the silver nanoparticles (AgNPs)-loaded antimicrobial wound dressing patch using ethyl cellulose as a matrix membrane and diethyl phthalate as a plasticizer. The polymer suspension was homogeneously mixed with plasticizer, and then added to the colloidal AgNPs suspension. This mixture was poured into Petri dish and subsequently dried in a hot air oven at 80?±?2 °C for 10 h. The minimum inhibition concentration of the colloidal AgNPs suspension was 2.5 µg/ml. The AgNPs-loaded antimicrobial wound dressing patch was evaluated for physical properties by differential scanning calorimeter, X-ray diffraction, scanning electron microscope, and in vitro study. The antimicrobial wound dressing patch did not exhibit any interaction between the matrix membrane and AgNPs. The AgNPs were evenly dispersed in the patch. The patch could control the release of silver at 102.98?±?4.11% over 12 h. Although the AgNPs-loaded antimicrobial wound dressing patches can be easily prepared by the simple method, in future studies antimicrobial wound dressing patch will be developed by employing different types of film forming agents.  相似文献   

14.
This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as the interaction with water, were measured. The compatibility of the film-forming components and the uniformity of the films were determined by zeta potential and SEM, respectively. The glycerol and mucilage allowed obtaining more hydrophilic films. The barrier properties of the films made from 100 % chitosan were similar to composed films containing PVA up to 40 %. The results of this study suggest that the interaction between chitosan and mucilage could increase water vapor permeability. The films prepared from either 100 % chitosan or PVA showed a more hydrophobic behavior as compared to the composed films. The films were homogenous since no boundary or separation of components was observed, indicating a good compatibility of the components in the films.  相似文献   

15.
A series of organic–inorganic conducting nano polymer-matrix composite cation-exchanger have been synthesized via sol–gel method and characterized through FTIR, XRD, TGA-DTA, SEM, and TEM studies. The structural studies confirm the semi-crystalline nature of the material but the morphology of the exchanger gets changed after incorporation of inorganic moiety. The particle size of the nano-composite was found to be 19.2 nm. The observed band gap for the different samples was found to be in the range of 3.70–4.61 eV which shows that nano-composite material covers semiconducting range but the resistivity of samples is highly dependent on the percentage of inorganic part in the composite. Further the oxidative degradation of the polymer backbone begins after the removal of trapped water successively followed by dopant and low molecular weight oligomers. During the antimicrobial screening, the nano-composite was found to be active against different strains of bacteria and fungi. Gel electrophoresis and molecular docking studies were carried out to check the interaction and mechanism of inhibition of microbial growth, respectively by studying the effect of the nano-composite with DNA-Topoisomerase-1.  相似文献   

16.
A series of bio-nanocomposites (BNC)s were fabricated through solution casting method. At first, the surfaces of ZrO2 NPs were functionalized with citric acid and Vitamin C as green modifier agents. Then, PVA as polymer matrix was embedded with different contents (4, 8 and 12 wt%) of modified ZrO2 (m-ZrO2) NPs with the aim of ultrasonic irradiation process. The resulting BNCs were studied by various techniques. Thermal stability of obtained BNCs was enhanced after NPs’ addition to the PVA matrix. Optical activity of these new BNCs makes them potential candidate for UV shielding material. Lastly, the tensile strengths of the BNCs were increased in comparison to the pure PVA.  相似文献   

17.
The swelling capability of chitosan was explored in order to use water both, as volatile plasticizer and as pore-forming agent. Chitosan powder was swelled in acidic aqueous solution and melt blended with poly(ε-caprolactone) (PCL). After stabilization at 57% RH and 25 °C, samples suffered a water mass loss of around 30 wt% without dimensions variation. Despite the low miscibility of these biopolymers, quite homogeneous dispersion of chitosan within the polyester matrix was obtained. Some interactions between both biopolymers could be observed. To obtain chitosan phase with a thermoplastic-like behaviour, the plasticization effect was also studied by the addition of 25 wt% glycerol as non volatile plasticizer. The equilibrium moisture content of samples increased with the incorporation of glycerol due to its hydrophilic nature. Morphology, thermal and mechanical properties of the blends were determined after stabilization. The preparation of rich PCL blends allowed the formation of macroporous structures since samples were not contracted after water loss and stabilization. These biomaterials with such a porous structure could be used for biomedical applications.  相似文献   

18.
A novel sodium alginate-grafted poly(acrylic acid)/graphene oxide (NaAlg-g-PAA/GO) composite hydrogel was prepared via ultraviolet irradiation, and characterized by infrared spectroscopy spectrometer. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. It was employed to adsorb NH4+ from aqueous solution and used as slow-release nitrogen fertilizers (SNFs). Result indicated that the adsorption process for NH4+ reached equilibrium within 50 min, with the adsorption capacity of 6.6 mmol g?1 even if 30 wt% GO was incorporated. The results of adsorption kinetic and isotherm were well described by the pseudo-second-order and Freundlich model. The thermodynamics analysis showed the adsorption process was spontaneous. The study indicated excellent water-holding ratio of soil with 2 wt% SNFs was 81.2%, and nitrogen release was up to 55.1% within 40 days in soil. Overall, NaAlg-g-PAA/GO could be considered as an efficient adsorbent for the recovery of nitrogen with the agronomic reuse as a fertilizer.  相似文献   

19.
Cellulose gel films were prepared by regeneration process using pre-cooled aq.(8 wt% LiOH + 15 wt% urea) mixture as solvent and ethyl alcohol as non solvent. The Terminus cattapa leaf extract diffused wet cellulose films were then dipped in 1–5 mM aq.AgNO3 solutions to allow in situ generation of silver nanoparticles (AgNPs). Besides the in situ generation, some AgNPs were also formed outside the wet films in the solution. The AgNPs formed outside the films were observed under transmission electron microscope and scanning electron microscope. The nanocomposite films were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis and tensile test. The thermal stability of the composite films was lower than that of the matrix up to a temperature of ~300 °C and afterwards showed a reverse trend. The tensile strength of the nanocomposite films was found to be higher than the matrix but decreased with increasing concentration of aq.AgNO3. The cellulose/AgNPs composite films showed good antibacterial activity against E. coli (gram positive) and Bacillus sp. (gram negative). Based on the aforementioned properties, the cellulose/AgNPs composite films can be considered for antibacterial packaging and medical applications.  相似文献   

20.
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with nanocrystalline cellulose. This glycerol-based polymer is thermally stable as a consequence of its targeted cross-linked structure. To broaden its range of properties, it was specifically formulated with nanocrystalline cellulose (NCC) at concentrations of 1, 2 and 4 wt%, and showed improved mechanical properties with NCC. Specifically, the effect of reinforcement on mechanical properties, thermal stability, structure, and biodegradability was evaluated, respectively, by tensile tests and thermogravimetric analyses, X-ray diffraction and respirometry. The neat poly(GlySAMA) polymer proved flexible, exhibiting an elongation-to-break of 8.8 % while the addition of nanowhiskers (at 4 wt%) caused tensile strength and Young’s modulus to increase, 20 and 40 %, respectively. Stiffness improved without significantly decreasing thermal stability as measured by thermogravimetric analysis. Biodegradation tests indicated that all samples were degradable but NCC reduced the rate of biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号