首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
Polyvinyl alcohol (PVA), being a dominant contributor of total organic carbon (TOC) in textile wastewater, is not easily degradable by conventional methods of wastewater treatment. This study investigates the degradation of aqueous PVA in a continuous UV/H2O2 photoreactor since the feeding strategy of hydrogen peroxide proves to have considerable effects on the process performance. Response surface methodology involving the Box–Behnken method is adopted for the experimental design to study the effects of operating parameters on the process performance. Experimental analysis shows that the TOC removal varies from 16.11 to 42.70 % along with a reduction of the PVA molecular weights from 56.7 to 95.3 %. The TOC removal is significantly lower than the molecular weight reduction due to the generation of the intermediate products during oxidation. Operating the UV/H2O2 process in a continuous mode facilitates the degradation of highly concentrated polymeric solutions using a relatively small hydrogen peroxide concentration in the feed with a small residence time ranges from 6.13 to 18.4 min.  相似文献   

2.
In this research Fenton reagent (Fe2+/H2O2) was investigated as oxidants to degrade poly (vinyl alcohol) (PVA). The role of nano-TiO2 photocatalyst was discussed as an additive in Fenton reagent (Fe2+/H2O2). Pt/TiO2 composites were also synthesized by photo-reaction to be used as additive in Fenton reagent. The rapid degradation of PVA was obtained when Pt/TiO2 composites served as photocatalyst. The different photocatalytic efficiency of Pt/TiO2- Fenton reagent (Fe2+/H2O2) was studied compared with TiO2- Fenton reagent (Fe2+/H2O2) during the degradation of PVA.  相似文献   

3.
A novel Fe3O4/cellulose–polyvinyl alcohol (PVA) aerogel was successfully synthesized by an eco-friendly and facile method in this work. Cellulose/PVA matrix was prepared through an environmental friendly physical cross-linking process and further in-situ decorated with Fe3O4. Series of Fe3O4 decorated aerogels were prepared and the effects of Fe3O4 nanoparticles (NPs) on the aerogels were systematic investigated. As-prepared aerogels exhibited desirable properties including nanostructure, relatively high porosity, improved mechanical and superparamagnetism. The TEM results showed that Fe3O4 NPs were integrated in the three-dimensional matrix of cellulose/PVA with a diameter of 9–12 nm. Furthermore, the mechanical strength of the aerogels was significantly enhanced after the introduction of Fe3O4 NPs. Meanwhile, the obtained Fe3O4/cellulose/PVA aerogel exhibited excellent adsorption performance toward methyl blue dye, and can be reused through fenton-like catalysts oxidative degradation of organic dye in H2O2 solution. Therefore, they will have a great potential application as eco-friendly and economical adsorbents.  相似文献   

4.
From the point of view of a sustainable and environment-friendly society based on the recycling of material resources, it is preferable to utilize waste gypsum as a substitute for lime, which is currently produced by the calcination of limestone. In the present work, the reductive decomposition of CaSO4 was investigated under an atmosphere of CO: 2 vol%, CO2: 30 vol%, with N2 as a carrier gas without and with the addition of SiO2, Al2O3, or Fe2O3. It was found that the decomposition temperature of CaSO4 was significantly reduced from 1673 K to 1223 K when only 5 wt% Fe2O3 was added to CaSO4. In the case of the addition of SiO2 or Al2O3 to CaSO4, the decomposition temperature was reduced from 1673 K to 1623 K. This was due to the formation of composite oxides (calcium ferrite, calcium silicate, or calcium aluminate) during the reaction of CaSO4 with the additives at a lower temperature. In addition, the formation of unfavorable product CaS was inhibited in the presence of 5 wt% Fe2O3, and this inhibition effect further increased as the addition of Fe2O3 was increased. In contrast, no significant effect on the inhibition of CaS formation was observed on the addition of SiO2 or Al2O3.  相似文献   

5.
A series of bio-nanocomposites (BNC)s were fabricated through solution casting method. At first, the surfaces of ZrO2 NPs were functionalized with citric acid and Vitamin C as green modifier agents. Then, PVA as polymer matrix was embedded with different contents (4, 8 and 12 wt%) of modified ZrO2 (m-ZrO2) NPs with the aim of ultrasonic irradiation process. The resulting BNCs were studied by various techniques. Thermal stability of obtained BNCs was enhanced after NPs’ addition to the PVA matrix. Optical activity of these new BNCs makes them potential candidate for UV shielding material. Lastly, the tensile strengths of the BNCs were increased in comparison to the pure PVA.  相似文献   

6.
The present study includes synthesis of two γ-Al2O3 samples from waste aluminum cans using a simple precipitation method. Precipitation was carried out using two different precipitating agents (i.e. NaOH and NH4OH). The two prepared alumina samples were characterized by means of X-ray diffraction (XRD) and N2 adsorption–desorption techniques. Surface acidity of γ-Al2O3 samples was measured by adsorption of two different probe molecules (i.e. pyridine and dimethyl pyridine) followed by desorption measurements using thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Catalytic activity of the two prepared alumina samples towards the dehydration of methanol (to dimethyl ether) was studied in a fixed bed reactor at 300 °C. For comparison reasons, commercial γ-Al2O3 sample was, also, tested for the same catalytic reaction under the same conditions. Results showed that the alumina sample prepared using NaOH as a precipitating agent exhibited a better catalytic activity and stability compared with that prepared using NH4OH and showed a similar activity as the commercial γ-Al2O3 sample.  相似文献   

7.
The textile and dyeing industries are among the largest water-consuming and polluting industries in the world. The most important feature of the textile dyeing industry wastewater is its color, due to the use of colored materials. Most of these dye compounds are resistant to conventional purification methods and their biodegradation is very low through secondary purification processes, resulting in incomplete removal. Therefore, selecting the optimal method to remove these color compounds is essential. In this study, we studied the removal of an organic dye contaminant (Reactive Blue dye 19 [RB19]) using advanced oxidation processes (AOPs). For this purpose, ultraviolet (UV) mercury lamps with a wavelength of 254 nm and a voltage of W16 inside a reactor were used as an energy source. The experiments were performed in a collimated beam reactor inside a dark chamber. Two oxidizers, sodium hypochlorite (NaOCl) and hydrogen peroxide (H2O2), were used to remove RB19 from the artificial sewage stream. Removal of RB19 with a concentration of 20 mg/L with variable pH (5, 7, and 9), oxidant concentrations (5, 10, and 20 mg/L), and time (5, 10, 15, and 30 min) were investigated during the processes of photolysis, chemical oxidation (by H2O2 and NaOCl), and UV/NaOCl and UV/H2O2 AOPs. The photolysis process did not remove the RB19. The highest removal efficiencies of RB19 by chemical oxidation processes with NaOCl and H2O2, UV/NaOCl, and UV/H2O2 at optimal conditions (pH = 5, [oxidant] = 20 mg/L, RB19 = 20 mg/L, and radiation intensity of 1005 mJ/cm2) were 64.49%, 0.88%, 99.7%, and 13.31%, respectively. These results indicate that the hydroxyl radical was produced, under optimum conditions, more in the acidic medium; thus, the RB19 removal efficiency was higher in the acidic medium. The combination of UV rays with oxidants resulted in the production of more hydroxyl radicals and increased removal efficiency.  相似文献   

8.
This paper presents a study regarding the preparation of MgCr2O4 from waste tannery solution, and chromium leaching behavior is also investigated with varying amounts of sulfate, chloride and calcium. The phase transformation, crystallinity index and crystallite diameter were characterized using XRD, FT-IR and thermal analysis. A well-crystallized MgCr2O4 was successfully prepared at 1400 °C. The sintering temperature had a major impact on the formation of MgCr2O4 compared with sintering time. The MgCr2O4 phase was observed initially at 400 °C and its crystallite diameter increased with increasing temperature. The concentration of total chromium leached and Cr(VI) decreased gradually with increasing temperature. The considerable amount of Cr(VI) was found in the leachate at 300–500 °C caused by Cr(VI) intermediary products. Sulfate and chlorine could impact the transformation efficiency of chromium adversely, and chlorine has a more significant effect than sulfate. The presence of calcium disturbed the formation of MgCr2O4 and new chromium species (CaCrO4) appeared, which resulted in a sharp increase in the concentration of leached Cr(VI). Incorporating Cr(III) into the MgCr2O4 spinel for reusable products reduced its mobility significantly. This was demonstrated to be a promising strategy for the disposal of chromium containing waste resource.  相似文献   

9.
Contaminated groundwater at a chemical antioxidant and phenolic resin chemical production site was subjected to treatability studies to develop design criteria for surface water discharge. Raw groundwater required pretreatment for total suspended solids (TSS) and color removal prior to treatment by ultraviolet light/hydrogen peroxide (UV/H2O2). Because of high capital and operating costs for UV/H2O2, biological treatment was evaluated as an alternate. Respirometric analyses showed that completely mixed activated sludge could be applied as a treatment technology to the groundwater. Biotreatment resulted in an approximately 70 percent reduction in soluble chemical oxygen demand (SCOD). Residual SCOD was recalcitrant to further biodegradation. The treated effluent was tested for aquatic toxicity using fathead minnows (Pimephales promelas) and Ceriodaphnia dubia and was found to be toxic. Toxicity reduction of biotreatment effluent was evaluated in bench-scale experiments using activated carbon adsorption, filtration, and UV/H2O2. Subsequent toxicity testing showed that filtration alone could reduce the bioeffluent toxicity and that residual SCOD was not the primary source of toxicity.  相似文献   

10.
Present study envisaged the sequential experimental design approach for the development of biodegradable Gelatin-Tapoica/polyacrylamide superabsorbent. Percentage water uptake efficacy of candidate sample was optimized using Response Surface Methodology (RSM) design under microwave irradiation. Different process variables such as potassium persulphate and ammonium persulphate (KPS:APS) ratio, pH, reaction time concentration of acrylamide and N,N-methylene-bis-acrylamide (MBA) were investigated as a function of percentage swelling using sequential experimental design. Maximum liquid efficacy of 1550% was obtained at KPS:APS?=?1.0:0.5; acrylamide?=?7.67?×?10?1 mol L?1; MBA?=?1.76?×?10?2 mol L?1; pH 10 and time?=?110 s. The 3D crosslinked network formed was characterized using Fourier Transformation Infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopic (SEM) techniques and thermal stability was ensured by Thermal gravimetric Analysis/Differential Thermal Analysis/Differential Thermal Gravimetric (TGA/DTA/DTG) studies. Superabsorbent synthesized could increase the moisture content in different type of soils and was found to enhance the water-holding capability of the soil upto 60 days in clayey, 40 days in sandy and 51 days in mixture of two soils under controlled conditions. Further, candidate polymer was investigated for the in-vitro controlled release of the KNO3 with diffusion exponent ‘n’ was found to be 0.4326 indicating Fickian type diffusion. Also, initial diffusion coefficient (DI?=?3.49?×?10?5 m2 h?1) was found to be greater than the lateral diffusion coefficient (DL?=?3.76?×?10?6 m2 h?1) indicated rapid release of KNO3 during initial hours with slow release afterwards. The ecofriendly nature of the synthesized polymer was also tested by conducting biodegradation studies and it was found to degrade upto 94% and 88.1% within 70 days with degradation rate of 1.34 and 1.26% per day using composting method and vermicomposting method respectively. So, the synthesized candidate polymer was found to be boon for agriculture-horticulture sector with wide applicability.  相似文献   

11.
Styrene (St) was graft-polymerized onto the surfaces of micro-sized silica gel particles, and the surface-grafted composite particles PSt/SiO2 were obtained. With the surface-grafted composite particles PSt/SiO2 as a starting material, water-insoluble antibacterial materials with quaternary ‘onium’ salt-type were synthesized via two polymer reaction steps. The grafted polystyrene was first chloromethylated, resulting in grafted particles CMPS/SiO2, and then quaterisation (QN) and quaternary phosphonium reaction (QP) were conducted with triethylamine, tri-n-butylamine and triphenyl phosphine as reagents, respectively. Two kinds of water-insoluble antibacterial materials, QN-PSt/SiO2 and QP-PSt/SiO2 were prepared. Their antibacterial property was mainly investigated by using Escherichia coli (E. coli) as a model bacterium and by adopting colony count method. The relationship between the chemical structure of the antibacterial group and antimicrobial activity for the water-insoluble antibacterial materials was studied in detail, and their antibacterial mechanism was investigated by TTC-dehydrogenase activity determination and extracellular DNA and RNA measurement methods. The experimental results show that QN-PSt/SiO2 and QP-PSt/SiO2 possess strong antibacterial activity. The main factors affecting the antibacterial ability of the water-insoluble materials are the chemical structure of the antibacterial groups, the bound density of the antibacterial groups on the surface of the water-insoluble antibacterial materials as well as the pH value of the medium. QP-PSt/SiO2 has stronger antibacterial activity than QN-PSt/SiO2; the QN-PSt/SiO2 prepared with tri-n-butylamine has stronger antibacterial activity than that prepared with triethylamine; the water-insoluble material with higher bound density of the antibacterial groups has stronger antibacterial ability; as the pH value of the medium is over the isoelectric point of E. coli, the antibacterial ability is strengthened with the increase of pH value.  相似文献   

12.
The degradation of chitosan by means of ultrasound irradiation and its combination with homogeneous photocatalysis (photo-Fenton) was investigated. Emphasis was given on the effect of additive on degradation rate constants. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. To increase the efficiency of degradation process, degradation system was combined with Fe(III) (2.5 × 10−4mol/L) and H2O2 (0.020–0.118 mol/L) in the presence of UV irradiation and the rate of degradation process change from 1.873 × 10−9−6.083 × 10−9 mol1.7 L s−1. Photo-Fenton process led to complete chitosan degradation in 60 min with the rate increasing with increasing catalyst loading. Sonophotocatalysis in the presence of Fe(III)/H2O2 was always faster than the respective individual processes. A synergistic effect between ultrasound and ultraviolet irradiation in the presence of Fenton reagent was calculated. The degraded chitosans were characterized by X-ray diffraction (XRD), gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) spectroscopy and average molecular weight of ultrasonicated chitosan was determined by measurements of intrinsic viscosity of samples. The results show that the total degree of deacetylation (DD) of chitosan change, partially after degradation and the decrease of molecular weight led to transformation of crystal structure. A negative order for the dependence of the reaction rate on total molar concentration of chitosan solution within the degradation process was suggested. Results of this study indicate that the presence of catalyst in the reaction medium can be utilized to reduce molecular weight of chitosan while maintaining the power of irradiated ultrasound and degree of deacetylation.  相似文献   

13.
Carbon nanotubes have exceptional mechanical properties which make them very attractive for the development of composite membranes. In this research, NH3/N2 gas permeation behavior of flat sheet composite membranes was examined. The cellulose acetate-multiwalled carbon nanotubes composite membranes were synthesized using solution casting method. The morphology and dispersion of carbon nanotubes were observed through SEM. However, the composite membranes were also characterized using several analytical techniques such as X-ray diffraction analysis, tensile testing analysis, and thermal gravimetric analysis. Characterization of these membranes depicted that carboxylic group functionalized MWCNTs are extremely compatible with CA. The permeation experiments were performed with NH3 and N2 to explore the host–guest interaction of MWCNTs with chosen gases. The permeability of NH3 was found pronounced compared to N2. The NH3/N2 selectivity up to 90 was documented.  相似文献   

14.
To control the emission of halides into the environment, an experiment on the nonthermal plasma decomposition of the halides CF4, CHF3, C2HCl3, and CHClF2 was conducted in a wire-in-tube corona reactor. It was found that the decomposition of C2HCl3 and CHClF2 was easy compared with the decomposition of CF4 and CHF3. With the addition of H2 in N2 gas, the decomposition ratio of CF4, C2HCl3, and CHClF2 increased. In contrast, the decomposition ratio of CHF3 in a hydrogen-rich atmosphere was lower than that in an N2 atmosphere. It was demonstrated that the yields of HF and/or HCl formed during halide decomposition clearly increased in the presence of H2 in N2 gas. Furthermore, in order to prevent the production of unwanted products from halide decomposition, a combination of plasma decomposition and in situ alkaline absorption was devised by coating a layer of Ca(OH)2 onto the surface of the grounding electrode. It was demonstrated that the Ca(OH)2 sorbent played an effective role as a scavenger, participating in halide decomposition by capturing reaction products such as HCl and HF, therefore resulting in increased halide decomposition.  相似文献   

15.
A new treatment method is developed to degrade 4-chlorophenol (4-cp) and its oxidation intermediates. The experimental results of this research demonstrate that 4-cp and its oxidation intermediates can be decomposed completely by basic oxygen furnace slag (BOF slag) with hydrogen peroxide (H2O2) in an acid solution. The factors that effect the treatment efficiency were studied including initial concentration of 4-cp, pH of the solution, concentration of H2O2 and amount of BOF slag. The BOF slags are final waste materials in the steel making process. The major components of BOF slag are CaO, SiO2, Fe2O3, FeO, MgO and MnO. As the BOF slag in an acid solution, FeO and Fe2O3 can be dissociated to produce ferrous ion and ferric ion. Ferrous ion reacts with hydrogen peroxide to form “Fenton's reagent” which can produce hydroxyl radicals (OH.). Hydroxyl radical possession of high oxidation ability can oxidize organic chemicals effectively. Results show that 100 mg/l of 4-cp is decomposed completely within 30 min by 438.7 g/l BOF slag with 8.2 mM hydrogen peroxide in pH=2.8±0.2 solution. The COD value of the solution is reduced from 290 to 90 mg/l. The factors studied which affect the 4-cp decomposition efficiency were the hydrogen peroxide concentration, BOF slag concentration, pH of the solution and initial concentration of 4-cp. Because large amounts of Fe2O3 and FeO are present in the BOF slag, the BOF slag not only has a high treatment efficiency, but also can be used repeatedly.  相似文献   

16.
A poly(lactic acid) (PLA)/polyamide 11 (PA11)/SiO2 composite was mixed from PLA, PA11, and nanosilica particles through twin-screw extrusion. The PLA/PA11/SiO2 composite was evaluated with tensile and Izod impact tests, light transmission and haze measurement, and isothermal and nonisothermal crystallization behavior determinations. The PLA/PA11/SiO2 (97.0/3.0) composite had approximately 10.8% less ultimate tensile strength than neat PLA, but it had greater ductility and approximately ninefold greater elongation at break. A dimple morphology was observed on the fractural surface of the PLA/PA11/SiO2 composite, indicating that the incorporation of PA11 and nanosilica particles increased the ductility of the PLA matrix. PLA with less than 3 wt% of PA11 and 0.5 phr of nanosilica particles had an Izod impact strength of 8.72 kJ/m2. PA11 and nanosilica particles effectively toughened this PLA polymer; they accelerated both isothermal and nonisothermal crystallization rates and increased the crystallinities of the resulting composites under isothermal and nonisothermal crystallization processes.  相似文献   

17.
Activated carbons were produced from waste pine wood sawdust using fast activation with H3PO4 in a spouted bed. In this study, activation temperature was set as 800 °C, and activation time ranged from 1 to 15 min. Experimental results show that sawdust impregnated with higher mass ratio of H3PO4 would be agglomerated in spouted bed, and difficult to fluidize. Therefore, an amount of quartz sand was added to assist for good fluidization. Fluidization of particle can improve the BET surface area or micropore volume of activated carbons. High BET surface area activated carbons can be obtained with activation time of only 1–5 min by combining the fluidization and H3PO4 fast activation. The obtained activated carbons contained developed pore structure and abundant surface functional groups (carboxyl, carbonyl and P-containing groups) by SEM–EDS, FTIR and XPS techniques. The particles of impregnation ratio of 1:1 can achieve fluidization without adding the quartz sand, which was convenient for experimental operation and even industrial production, and the BET surface area can reach more than 1000 m2/g in activation time of only 5 min.  相似文献   

18.
A series of formulations were prepared with different percentages of oligomer, epoxy diacrylate (EA-1020 ), monomer, 1,6 Hexane diol diacrylate,(HDDA) and different percentages of filler (Magnesium tri-silicate, Mg2Si3O8). Irgacure 369 [2-Benzyl-2-dimethyl-amine-1 (4-morpholinophenyl) butanone-1] was used in the formulations as photoinitiator. Ultraviolet (UV) cured thin polymer films were prepared from these formulating solutions on clean glass plates. Pendulum hardness (PH), gel content and macro scratch hardness (MSH) of the UV cured films were studied. One percent Mg2Si3O8 containing formulation showed the premium properties. The substrates (plain board) were coated by these formulating solutions and cured under the same UV lamp at different intensities of radiation. Various properties of the coated surface such as PH, gloss, adhesion, abrasion and MSH were investigated. The base coat containing 1% Mg2Si3O8 and top coat containing 48% HDDA produced the best performance among all the formulations inspected. The degradable properties in different weathering conditions on PH, gloss, adhesion, abrasion and MSH were measured. The surface cured with the optimized formulation (E) again yielded the minimum loss of the properties.  相似文献   

19.
This paper presents the chemical reaction engineering development of the H2O2/VisUV photo-oxidation process for treatment of hazardous waterborne substances, that occur in groundwater, leachates, and industrial wastewater. Reaction results, on benzene (BNZ), dichlorobenzene (DCB), trichloroethene (TCE), trichloroethane (TCA), and carbon tetrachloride (CTC), have been obtained, providing engineering data and models that can be used to size full-scale equipment. A photochemical flow stirred tank reactor (pcfSTR) and a photo-chemical tubular flow reactor (pcTFR) were used in the experimental work. Two experimental discoveries were made in the course of the work: (1) conventional thermal kinetics do not apply, the rate controlling variable is the photon flux, and (2) for the photo-chemical reactors used, the pcfSTR was more effective than the pcTFR. The following sub-topics are discussed: reaction mechanism, reactor hydrodynamics, photon flux effects, typical reaction data (on benzene and trichloroethane), and rate constants.  相似文献   

20.
Increasing concern about the air pollution caused by sulfur dioxide (SO2) from diesel exhaust has resulted in the improvement of low-temperature desulfurization materials for the combined SO2 trap. In this study, coconut shell activated carbon (AC) is pretreated by nitric acid to prepare MnO2-based activated carbon materials for SO2 removal. The prepared materials are characterized intensively by SEM, TEM, BET, XRD, FTIR, and XPS. The SO2 capture capacity of these materials are measured at low temperature by thermogravimetry, and the SO2 equilibrium adsorption characteristic is also investigated. The results show that the concentrations of nitric acid do not significantly change the textural properties of MnO2-based AC materials. The content of surface-oxygenated groups (carbonyl carbon and transition) initially increases with the HNO3 concentration rising and reaches the maximum value when the HNO3 concentration is 10 mol/L, resulting in the enhancement of the SO2 capture capacity. SO2 capture capacity of MnO2-based activated carbon decreases after regeneration and keeps stable after several cycles of thermal regeneration. The experimental data for SO2 adsorption on MnO2-based AC composite can fit the Freundlich model well in comparison with Langmuir model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号