首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Removal of toxic pollutants from water and wastewater is becoming an important process with the increase of industrial activities. The present study focused on assessing the suitability and efficiency of water bamboo leaves (WBL) for the removal of cationic dye from aqueous solutions. The effect of different variables in the batch method including solution pH (2–12), initial dye concentration (50–250 mg L?1), adsorbent dose (0.05–0.30 g), contact time (5–180 min) and temperature (283–333 K) on the dye removal was investigated. The adsorption kinetics was discussed in view of four kinetics models. The results showed that the pseudo-second-order kinetics model described dye adsorption on WBL very well. The experimental equilibrium data were also tested by four isotherm models. It was found that adsorption of dye on WBL fitted well with the Langmuir isotherm model, implying the binding energy on the whole surface of the adsorbent was uniform and the dye molecules onto the surface of the adsorbent were monolayer coverage. Calculation of various thermodynamic parameters of the adsorption process indicated feasibility and exothermic nature of dye adsorption.  相似文献   

2.
This research article describes, an eco-friendly activated carbon prepared from the Gracilaria corticata seaweeds which was employed for the preparation of biodegradable polymeric beads for the efficient removal of crystal violet dye in an aqueous solution. The presence of chemical functional groups in the adsorbent material was detected using FTIR spectroscopy. The morphology and physical phases of the adsorbent materials were analyzed using SEM and XRD studies respectively. Batch mode dye adsorption behavior of the activated carbon/Zn/alginate polymeric beads was investigated as a function of dosage, solution pH, contact time, initial dye concentration and temperature. Maximum dye removal was observed at a pH of 5.0, 1 g of adsorbent dosage with 60 mg/L dye concentration, 50 min of contact time and at 30 °C. The equilibrium modeling studies were analyzed with Freundlich and Langmuir adsorption isotherms and the adsorption dynamics was predicted with Lagergren’s pseudo-first order, pseudo-second order equations and intra particle diffusion models. The process of dye removal followed a pseudo second-order kinetics rather than pseudo first order. The thermodynamic parameters like standard Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined and the results imply that the adsorption process was spontaneous, endothermic and increases the randomness between the adsorbent and adsorbate. The results from the experimental and correlation data reveal that the Gracilaria corticata activated carbon/Zn/alginate polymeric beads have proved to be an excellent adsorbent material for the removal of CV dye.  相似文献   

3.
SBA-15/PAMAM Nano adsorbent was synthesized by the proficiency of SBA-15 as an original compound, 3-chloropropyltrimethoxysilane as a bridge chemical compound and polyamidoamine dendrimer (PAMAM) in the role of a multifunctional amine end group for adsorption of acid blue 62 (AB62) from aqueous media. The synthesized adsorbent was characterized by transmission electron microscope, field emission scanning electron microscope and Fourier-transform infrared spectroscope. A response surface methodology was employed to evaluate the simple and amalgamated factors of the operating variables subtending initial pH (2–12), adsorbent dosage(0.01–0.03 g), contact time (5–120 min), initial dye concentration (40–600 ppm) and temperature (25–45?°C) to optimize the operating statues of the treatment method. These parameters were altered at five levels pursuant to the central composite design to appraise their effects on AB62 removal through analysis of variance. Analysis of variance represented a high coefficient of definition amount (R2?=?0.9999) and acceptable prediction quadratic polynomial model was concluded which ascertain the suitability of the model and a high correlation among the predicted and empirical amounts. Utmost color removal efficiency was auspicated and empirically accredited. The optimum conditions relied on acquired results for AB62 removal were at an initial pH of 2, adsorbent dosage of 0.03 g SBA-15/PAMAM, dye concentration of 40 mg l?1, time contact of 60 min and temperature of 25?°C.  相似文献   

4.
The crosslinking of chitosan with cyanoguanidine shows some advantages, such as the improved the stability in acid solutions and the decrease of adsorbent cost. In this work, cyanoguanidine-crosslinked chitosan and pure chitosan were prepared to apply in the adsorption of Food Yellow 4 (FY4) and Food Blue 2 (FB2), in single and binary systems. Effects of pH and deacetylation degree (DD) of chitosan in adsorption were evaluated. The adsorbents were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The kinetic data were analyzed by pseudo-first order, pseudo-second order and Avrami models. The conditions of pH 3 and DD 95% were the more suitable to reach the highest adsorption capacities in all experimental assays. Under these conditions, the adsorption capacities for FY4 were approximately of 392 and 200 mg g?1 and, for FB2 were approximately of 370 and 184 mg g?1, respectively, in the single and binary systems. The Avrami model was suitable to represent the kinetic curves in all conditions, and the highest adsorption capacities were found for FY4 in binary aqueous system, being for the pure chitosan of 229 mg g?1 and crosslinked chitosan of 218 mg g?1. The Langmuir and extended Langmuir models presented a good fit to the equilibrium data in both systems. It was found that, the chitosan crosslinked with cyanoguanidine improved the chemical stability of chitosan as adsorbent.  相似文献   

5.

In this research work, a novel gum acacia capped polyaniline-based nanocomposite hydrogel (GPA NCHs) was developed and evaluated for the adsorptive removal of cationic methylene blue dye (MB) from aqueous solutions. Firstly, Gum acacia (GA) capped Polyaniline (PANI) dispersion was synthesized by using dispersion polymerization. Then, a water-swellable hydrogel network consisting of GA-PANI and acrylamide (AM) was obtained by using N,N′ -methylene-bisacrylamide (MBA) as a cross-linker, and ammonium persulphate/N,N,N,N′-tetramethylethylenediamine (APS/TMEDA) as an initiating system. The developed materials were characterized by UV–visible, FTIR, XRD, SEM–EDX and TEM techniques. The microscopy studies revealed that GA-PANI nanoparticles have a granular morphological surface with an average size of?~?40–100 nm. Removal of MB dye from aqueous system was performed by adsorption studies in batch equilibrium mode with different dosage of GA-PANI, MB concentration, pH and temperatures. The adsorption data revealed that the absorption capacity of GPA NCHs highly depends on the dosage of GA-PANI, pH and concentration of the MB dye. The maximum percentage of MB removal onto GPA 1.0 NCHs was found to be 89% at pH 10 with a dye concentration of 10 mg L?1. The equilibrium adsorption data were also analyzed by different models to understand the adsorption process. The results revealed that the adsorption process followed the pseudo-second-order kinetics and it fit well in Langmuir and Freundlich adsorption isotherms with a maximum adsorption capacity of 35.41 mg g?1. These studies demonstrate that the GPA NCHs could be a promising adsorbent material for the removal of MB dye from contaminated aqueous systems.

  相似文献   

6.
The multiwall carbon nanotubes (MWCNTs) were modified by 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) via grafting reaction and γ-rays of 60Co source was used as initiator. The outcome product was called hydroxyethylated (HOEt-MWCNTs) graft poly(AMPS) and abbreviated as HOEt-MWCNTs-g-PAMPS. The parameters that affected the grafting yield were optimized. The maximum grafting obtained was ~20 %. HOEt-MWCNTs-g-PAMPS were characterized by Fourier transform infra red, scanning electron microscopy, high resolution transmission electron microscopy, thermal gravimetric analysis. The adsorptive removals of malachite green chloride (MGC) and reactive red 198 (RR-198) onto HOEt-MWCNTs-g-PAMPS were studied at variable conditions. The adsorption isotherms were analyzed using Langmuir, Redlich–Peterson, Freundlich, Khan and Sips models. The results referred that Sips model is the best fitting to adsorption of MGC and Freundlich model is the best fitting to RR-198 adsorption. The monolayer coverage capacities of HOEt-MWCNTs-g-PAMPS for MGC and RR-198 dyes were found 172 and 323 mg g?1, respectively. The rate of kinetic adsorption processes of MGC and RR-198 onto HOEt-MWCNTs-g-PAMPS were described by using pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-first order and pseudo-second order models were the best choice among the kinetic models to depict the adsorption behaviors of MGC and RR-198 dyes onto HOEt-MWCNTs-g-PAMPS, respectively. Further, the effect of temperature on the adsorption isotherms was investigated and the thermodynamic parameters were obtained. The results indicated that the adsorption process is spontaneous and endothermic. The values of ΔG° varied in range with the mean values showing a gradual increase from ?3.17 to ?3.64 kJ mol?1 for MGC and ?3.36 to ?3.73 kJ mol?1 for RR-198. The reusability and regeneration of adsorbent were investigated. The outcome data referred to that the efficiency of adsorbent >98 %. The outline results declared that there is a good potentiality for the HOEt-MWCNTs-g-PAMPS to be used as an adsorbent for the removal of MGC and RR-198 from aqueous solutions.  相似文献   

7.
High fluoride levels in drinking water have become a critical health hazard. In the present study, the performance of magnesia-loaded fly ash adsorption in the removal of fluoride from aqueous solution was investigated in a batch study. The effect of contact time, dosage, pH, temperature and agitation speed was studied at different values. The maximum removal efficiency was 88 % at 150 min. The effective dose of adsorbent was found to be 2.5 g/l. The optimum pH was found to be at pH 4. Kinetic studies and isotherm studies were also performed to understand the ability of the adsorbents. The monolayer adsorption capacity determined from the Langmuir adsorption equation was found to be 11.61 mg/g. The kinetic measurements suggested the involvement of pseudo-second-order kinetics in adsorption and were controlled by a particle diffusion process. Overall, the results of this study suggest that magnesia-loaded fly ash is an environmentally friendly, efficient and low-cost adsorbent, useful for the removal of fluoride from aqueous solution.  相似文献   

8.
Sunflower residue, an agricultural waste material for the removal of lead (Pb) and cadmium (Cd) from aqueous solutions were investigated using a batch method. Adsorbent was prepared by washing sunflower residue with deionized water until the effluent was colorless. Batch mode experiments were carried out as a function of solution pH, adsorbent dosage, initial concentration and contact time. The results indicated that the adsorbent showed good sorption potential and maximum metal removal was observed at pH 5. Within 150 min of operation about 97 and 87 % of Pb and Cd ions were removed from the solutions, respectively. Lead and Cd sorption curves were well fitted to the modified two-site Langmuir model. The adsorption capacities for Pb and Cd at optimum conditions were 182 and 70 mg g?1, respectively. The kinetics of Pb and Cd adsorption from aqueous solutions were analyzed by fitting the experimental data to a pseudo-second-order kinetic model and the rate constant was found to be 8.42 × 10?2 and 8.95 × 10?2 g mg?1 min?1 for Cd and Pb, respectively. The results revealed that sunflower can adsorb considerable amount of Pb and Cd ions and thus could be an economical method for the removal of Pb and Cd from aqueous systems.  相似文献   

9.
Polyaniline (PANI) and polyaniline/Gördes-clinoptilolite (PANI/GC) composite materials were synthesized by the chemical oxidative polymerization technique and used in the adsorption of Acid Violet 90 metal-complex dye (AV 90). The samples were characterized by X-ray diffractions, nitrogen adsorption–desorption isotherms, scanning electron microscopes and Fourier transform infrared. The effect of initial pH (2–8), sorbent dosage (0.5–4.0 g/L) and initial dye concentrations (50400 mg/L) on adsorption onto PANI and PANI/GC were examined in a batch system. Langmuir, Freundlich and Temkin isotherm models were used to investigate the adsorption mechanism of AV 90 on PANI and PANI/GC. Langmuir isotherm model for PANI/GC and Freundlich isotherm model for PANI were fitted well with the experimental data. The highest dye uptake capacities were obtained with Langmuir isotherm model as 153.85 mg/g and 72.46 mg/g for PANI and PANI/GC, respectively. In order to determine the adsorption kinetics, pseudo first-order and second-order kinetic models were studied. As a result, the adsorption of AV 90 dye on PANI and PANI/GC was better identified with Pseudo second-order kinetic model than the first one.  相似文献   

10.
A series of nanaoscale aramid-based adsorbents were prepared by the functionalization of poly (p-phenylene terephthalamide) (PPTA) with different content of ethylenediamine (EDA). Their structures were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. Metal ions, including Hg2+, Pb2+, Ag+, Cu2+, Cd2+, and Ni2+ were chosen as the models to explore the binding behaviors of PPTA–ECH–EDA in aqueous medium. Results showed that PPTA–ECH–EDA exhibited higher adsorption capacity for Hg2+ due to their nanoscale structures. In particular, the adsorption rate was so high that equilibrium was achieved within 15 min for Hg2+. The adsorption of Hg2+ on PPTA–ECH–EDA followed the pseudo second-order model well. Langmuir and Freundlich models were employed to fit the isothermal adsorption, and the results revealed that Freundlich isotherm was a better model to predict the experimental data. The adsorption mechanism was revealed by X-ray photoelectron spectroscopy. It is preconceived that PPTA–ECH–EDA could be used as an effective adsorbent for fast removal of heavy ions from wastewater.  相似文献   

11.
This study aimed at finding effective strategies for high-performance removal of reactive blue 19 (RB19) dye from aqueous solution. Chitosan (CS) films had been prepared by using solvent casting with mild drying for this purpose. The CS films were characterized by X-ray diffraction, field-emission scanning electron microscopy, and Fourier transform infrared (FTIR) spectroscopy. The performance of RB19 removal using CS were evaluated by varying contact time, solution pH, initial dye concentration, and adsorbent dosage. Adsorption isotherms, kinetics, and desorption were investigated by batch experiments. Results showed that CS films exhibited the optimal adsorption performance for RB19 removal and high maximum adsorption capacities of RB19, which were 799 and 822.4 mg g?1 at 20 and 40 °C, respectively. Adsorption kinetic data were well described by the pseudo-second-order kinetic model. FTIR analyses further indicated that interactions between RB19 and the CS film occurred during adsorption. The CS films also exhibited satisfactory desorption of RB19 at about 80 % after 30 min of desorption at pH 11. Our study demonstrated that the CS films can be easily prepared and applied for effective removal of RB19 in treatment of wastewater.  相似文献   

12.

In this study, modified polyacrylamide (PAAm) cryogels with high dye holding capacity were synthesized with an easily and cheaply process and adsorption of Remazol Black B (RBB) with the synthesized materials was investigated. Firstly, PAAm cryogels were synthesized with free radical cryo-copolymerization method and they were modified with Hofmann reaction to form amine groups in the structure of the cyrogels. Then, to increase the removal efficiency of cryogels, polyethylenimine (PEI) molecules were crosslinked onto the cryogels via NH2 groups present in the PAAm gels modified by the Hofmann reaction. The original and modified cryogels were characterized with fourier transformed infrared spectroscopy, 13C nuclear magnetic resonance spectroscopy, scanning electron microscopy and thermogravimetric analysis. The point of zero charge (pHpzc) of the modified cryogels was found to be 7.13 and RBB removing capabilities of PEI-modified PAAm cryogels were investigated at pH between 2 and 7. In addition, the adsorption treatments were performed at different process time, incubation temperature, initial dye concentration and adsorbent amount to find maximum removal capacity of the adsorbent. The modified cryogels adsorbed maximum amount of RBB at pH 2 and the sorption process reached equilibrium in 6 h. It was observed that the adsorption efficiency did not change much with the increase in temperature. The maximum RBB removal capacity of the modified cyrogels was determined to be 201 mg/g when the initial RBB concentration was 200 mg/L, treatment time was 6 h at pH 2. Moreover, the adsorption of RBB dye with the modified cryogels takes place with a second order kinetic and RBB dye adsorption data showed compliance with the Langmuir isotherm. The findings of the study expose that the obtained PEI-modified PAAm cryogels are a hopeful material for RBB removal in aqueous environment.

  相似文献   

13.
In this study, carbon nanotubes (CNTs) were synthesized from waste polyethylene bottles and their use as an adsorbent for the removal of diuron herbicide from aqueous solution was evaluated. Batch adsorption was performed by varying adsorbent dosage, initial concentration, contact time, and temperature. Kinetic models applied to experimental data indicated that the pseudo-second-order model had the best fit. The equilibrium data were analyzed using different isotherm models. The adsorption capacity of CNTs for diuron removal, determined using the Hill isotherm, was approximately 40.37 mg/g at 303 K. From thermodynamic studies, the values of ΔH° (kJ/mol) and ΔS° [kJ/(mol K)] were calculated as ?17.307 and ?0.0528, respectively, which suggested that the adsorption process was exothermic. The negative values of ΔG° at three different temperatures indicated that adsorption of diuron on CNTs was favorable.  相似文献   

14.
In this research, a novel thermosensitive nanosphere polymer (TNP) was synthesized by copolymerization of N-isopropylacrylamide with 3-allyloxy-1,2-propanediol for the removal of diazinon from water. The characterization of the synthesized adsorbent has been performed by Fourier transform infrared spectrometer, scanning electron microscopy and elemental analysis. Batch adsorption method was performed to investigate the influences of various parameters like pH, temperature and contact time on the adsorption of diazinon. The equilibrium adsorption data of diazinon by TNP was studied by Langmuir, Freundlich, Temkin and Redlich–Peterson model. According to equilibrium adsorption results, the Langmuir, Freundlich and Temkin constants were evaluated to be 0.912 (L/mg), 7.916 (mg/g) (L/mg)1/n and 2.494 respectively at pH 7 and room temperature. Based on Redlich–Peterson model analysis, the equilibrium data for the adsorption of diazinon was conformed well to the Langmuir isotherm model. This method was successfully applied for removal of diazinon from environmental samples. Moreover, in reusing of TNP, the sorption capacity was maintained without any significant change after 10 cycles of sorption–desorption process.  相似文献   

15.
Thorium(Th) contamination in the ground water an emerging environmental issue and Th recovery from sea water and nuclear wastewater is of high significance, as it is a major player in the energy sector. For the adsorption and recovery of Th, polymer grafted bio materials are reported as most efficient materials. P(IA/MAA)-g-NC/NB was prepared and all the steps in the synthetic routes were monitored using FTIR, SEM–EDS, and XRD, TG. Efficiency in removal of Th(IV) by P(IA/MAA)-g-NC/NB was tested by batch adsorption technique. The pH dependent Th(IV) adsorption process, was optimized at 4.5 and adsorption equilibrium was achieved within 120 min. Experimental kinetic data correlates well with pseudo-second-order equation, indicates adsorption was chemical process via ion exchange followed by complexation reaction, also could explain the film diffusion process of adsorption. Sips isotherm proved to best fit for the adsorption of Th(IV) onto P(IA/MAA)-g-NC/NB with maximum adsorption capacity of 95.19 mg/g. Thermodynamic studies revealed the endothermic nature, feasibility and spontaneity of the adsorption process. ΔHx and ΔSx were decreased to a small extent from ?5.567 to ?3.439 kJ/mol and increased from 11.18 to 18.39 J/mol, respectively, with increase in surface loading from 50 to 70 mg/g, indicating that the surface of the onto P(IA/MAA)-g-NC/NB is having energetically heterogeneous surface and there may be some lateral interactions between the adsorbed Th(IV) ions Repeated adsorption–desorption study over six cycles, adsorption percentage decreases from 99.0 to 94.6 %, proved the efficiency of P(IA/MAA)-g-NC/NB as an effective adsorbent for the removal and recovery of Th(IV) from aqueous solutions. Complete removal of Th(IV) ions from seawater containing 10 mg/L with a dose of 0.25 g/L P(IA/MAA)-g-NC/NB achieved. Batch adsorption system as double stage reactor designed from the adsorption isotherm data of Th(IV) by constructing operational lines. From these could be concluded that P(IA/MAA)-g-NC/NB is a promising candidate for the effective removal and removal of Th(IV) from industrial effluents phase and sea water. The maximum adsorption capacity Qs for Ceralite IRC-50 calculated which was found to be 179.67 mg/g which are considerably lower than those for P(IA/MAA)-g-NC/NB.  相似文献   

16.
刘保锋  洪军  王丽  童晨 《化工环保》2017,36(5):543-547
采用强酸性阳离子交换树脂D001作为吸附剂吸附脱除水溶液中的罗丹明B(Rh B)。SEM和FTIR表征结果显示:D001树脂表面存在孔隙,可增加树脂的比表面积;树脂表面的磺酸基团可通过与阳离子染料Rh B络合而将其吸附。实验结果表明:Langmuir等温吸附模型能更好地描述树脂对Rh B的吸附规律,升高温度有利于树脂吸附Rh B;吸附过程符合Lagergren准一级动力学方程,初始Rh B质量浓度为20 mg/L时吸附活化能为7.06 k J/mol;树脂对Rh B的吸附是一个自发的、吸热的、熵推动的过程;颗粒扩散为吸附过程的控制步骤;树脂具有良好的重复使用性能。  相似文献   

17.
核桃壳吸附剂对水中Pb2+的吸附   总被引:1,自引:0,他引:1       下载免费PDF全文
采用自制核桃壳吸附剂,利用静态吸附法,处理模拟含Pb2+废水。实验结果表明:当初始Pb2+的质量浓度20.00 mg/L、初始废水pH=5.5、吸附剂加入量12 g/L、吸附剂粒径1.60~2.50 mm、吸附时间120 min时,核桃壳吸附剂对Pb2+的去除率为91.7%;吸附剂对Pb2+的吸附行为满足拟二级吸附动力学方程,吸附等温线满足Langmuir等温方程,饱和吸附量达到3.903 mg/g;吸附饱和的吸附剂可用浓度 0.1 mol/L的硝酸解吸,经解吸后的吸附剂可重复利用3次。  相似文献   

18.
A novel sodium alginate-grafted poly(acrylic acid)/graphene oxide (NaAlg-g-PAA/GO) composite hydrogel was prepared via ultraviolet irradiation, and characterized by infrared spectroscopy spectrometer. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. It was employed to adsorb NH4+ from aqueous solution and used as slow-release nitrogen fertilizers (SNFs). Result indicated that the adsorption process for NH4+ reached equilibrium within 50 min, with the adsorption capacity of 6.6 mmol g?1 even if 30 wt% GO was incorporated. The results of adsorption kinetic and isotherm were well described by the pseudo-second-order and Freundlich model. The thermodynamics analysis showed the adsorption process was spontaneous. The study indicated excellent water-holding ratio of soil with 2 wt% SNFs was 81.2%, and nitrogen release was up to 55.1% within 40 days in soil. Overall, NaAlg-g-PAA/GO could be considered as an efficient adsorbent for the recovery of nitrogen with the agronomic reuse as a fertilizer.  相似文献   

19.
赵丽媛  李北罡  王维 《化工环保》2012,32(2):113-118
以粉煤灰为原料、Na2CO3为助熔剂,采用盐熔融—水浴结晶法制备粉煤灰基吸附剂。探讨了吸附剂的最佳制备条件及其对模拟废水中Cd2+的最佳吸附条件、吸附动力学和吸附机理。实验结果表明:制备吸附剂的最佳工艺条件为m(粉煤灰)∶m(Na2CO3)为1∶2,焙烧温度为450℃;采用最佳制备工艺条件下制备的吸附剂(记作2-450℃-FA吸附剂),在初始Cd2+质量浓度为300 mg/L、初始溶液pH为7.7、振荡时间为120 min的条件下,对模拟废水中Cd2+的去除率为98.0%。2-450℃-FA吸附剂对Cd2+的吸附主要受颗粒内扩散控制,吸附过程可用准二级吸附动力学方程很好地描述。Ea为77.22 kJ/mol,吸附过程主要为化学吸附。  相似文献   

20.
Calcium alginate hydrogel was prepared and used as a biosorbent for the removal of oil from aqueous solutions. Calcium alginate hydrogel was further chemically modified by esterification with maleic anhydride. The changes in the physicochemical properties of maleic anhydride modified calcium alginate were investigated via multiple techniques (FTIR, SEM, BET and DSC/TGA). Adsorption batch experiments were carried out to compare the oil adsorption capacities of native and modified calcium alginates. Adsorption experiments were carried out as a function of solution pH, temperature and ionic strength to determine the optimal conditions for the adsorption of oil. Equilibrium and kinetic studies were conducted for the modified alginate. Results revealed that the maleic anhydride modification of calcium alginate improved its adsorption capacity towards oil. Higher adsorption capacities of modified alginate were attained at lower temperatures (20 °C), higher ionic strengths (1.0 M NaCl) and within the pH range of 5–9. The oil adsorption data obtained for modified alginate could be better described by the first order kinetic model (R2?=?0.981) and the BET equilibrium isotherm (R2?=?0.984). The maximum monolayer adsorption capacity predicted by the BET model for the modified calcium alginate was found to be 143.0 mg/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号