首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to the large amount of waste slags produced by zinc industry, it has become necessary to recycle it in some areas. Road construction has significant potential for the use of waste materials because more material is always needed. In this study, the engineering behaviour of asphalt concrete was investigated using mineral aggregates with waste slag, which is a by-product of the zinc–lead production industry. The asphalt concrete tested in this study was fabricated using 25, 50, 75 and 100 % mixing ratios instead of the conventional fine mineral aggregate (11, 22, 33 and 44 % rate of total aggregate mixture) to determine the possibility of using slags in the binder course of bituminous hot mixtures. The asphalt concretes, made of waste slags and conventional asphalt concrete, were evaluated in terms of their fundamental engineering properties such as Marshall stability, flow, Marshall quotient (MQ), bulk specific gravity, air voids and voids filled with bitumen in the total mix characteristics. The results indicate that the addition of waste slag as mineral aggregate improves the engineering characteristic performance and that it can be used in bituminous hot mixtures. In addition, principal component analyses were applied to examine the significance of each Marshall parameter, and a regression model was developed to estimate the MQ value using effective parameters.  相似文献   

2.
This investigation presents the results of the study conducted to utilize carbide lime waste as a filler in asphaltic paving mixes, and to study the effect of the incorporation of the waste on the properties of asphaltic paving mixes. The waste, which consists mainly of calcium hydroxide, is generated from two acetylene plants in Bahrain, and the amount is estimated to be 5000 tonnes annually. Physical and chemical properties of the waste were studied. A total of 450 asphaltic concrete mixes were prepared at five different percentages by weight of the waste and the limestone (control). The percentages employed in the mixes were 2, 4, 6, 8, and 10 by weight of the aggregate. Marshall test methods were used to evaluate the compacted mix density, percent air voids, voids in mineral aggregate, stability, and flow. The Marshall stability was carried out at 40 °C, 60 °C, and 70 °C. The results revealed that the minimum 8 KN criteria adopted by the Bahrain specifications was met by all the waste mixes. Also, the waste mixes had much better resistance to high temperatures compared with mixes using conventional limestone filler. The results of the investigation suggest that the incorporation of the waste in asphaltic concrete mixes improves some of its properties, and that it is especially advantageous for use in arid environments, such as Bahrain.  相似文献   

3.
Building demolition waste constitutes a major component of municipal solid waste in Kuwait. Over 90% of this waste is currently land-filled, causing extreme pressure on the available land-fill sites. At the same time, the sources of natural aggregates are almost depleted, and there is an increasing demand because of the increased construction and maintenance activities. This article presents the results of a technical feasibility study into meeting this need by recycling the aggregates obtained from building demolition waste for asphalt concrete. The Marshall test, the immersion compression test, the loss of stability test, and the wheel track test were performed to evaluate the asphalt concrete made with recycled aggregate. The results showed that the asphalt concrete produced using an aggregate of demolition waste met all the requirements of local specifications.  相似文献   

4.
Use of recycled plastic in concrete: a review   总被引:4,自引:1,他引:3  
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.  相似文献   

5.
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members.  相似文献   

6.
The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.  相似文献   

7.
Ceramic waste materials from the production of titles has increased over the years. Preliminary studies on the properties of ceramics showed that this material can be incorporated into asphalt mixtures as aggregates. Laboratory tests were conducted to evaluate the feasibility of utilizing ceramic materials from tile manufacturing firms. A study was undertaken to look into the performance of crushed ceramics that were incorporated in asphalt mixtures to replace the conventional granite aggregates from sizes 5.0 mm down including the 75 micron filler. The replacement was done proportionally with a 0, 20, 40, 60, 80, and 100% percent by weight of granite aggregates. The outcome of the study showed that the performance of recycled ceramic aggregates in hot mix asphalt (HMA) reached an optimum at about 20% which means there is a great potential for the use of it in asphalt mixtures. The Marshall stability showed an increment of about 25% while the resilient modulus strength improved by 13.5% as compared with the control specimen. All samples were analyzed at various proportions of ceramic–granite aggregate combination and were observed that a 20% use of 5 mm down ceramic aggregates blended with granite aggregates produce higher strength HMA.  相似文献   

8.
Journal of Material Cycles and Waste Management - In this study, utilization of waste fluorescent lamp as mineral filler in asphalt mixture was investigated. The phosphorus powder of fluorescent...  相似文献   

9.
Recycling of construction and demolition waste contributes decisively to the saving of natural mineral resources. In Germany, processed mineral construction and demolition waste from structural engineering is used nearly exclusively in civil engineering (earthwork and road construction sector) as open-loop recycling. Due to the planned stricter limit values for the protection of soil and water, however, this recycling path in civil engineering may no longer be applicable in the future. According to some new guidelines and standards adopted recently, recycled aggregates may also be used for concrete production in the structural engineering sector (closed-loop recycling). Wastes from the structural engineering sector can thus be kept in a closed cycle, and their disposal on a landfill can be avoided. The present report focuses on the determination of maximum waste volumes that may be handled by this new recycling option. Potential adverse effects on the saving of resources and climate protection have been analysed. For this purpose, materials flow analysis and ecobalancing methods have been used.  相似文献   

10.
The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production.Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes.Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m3 of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation.  相似文献   

11.
将废粘土砖加工成粗细骨料,用于配制全废砖再生轻骨料混凝土.检测结果表明:所用废砖粗细骨料属轻骨料范畴,但其吸水率较大,且细骨料级配不良.试验表明:本试验配合比体系中,净水灰比为0.42,体积砂率为50%时最佳;以全废砖配制的再生砖轻骨料混凝土的强度发展规律与普通轻骨料混凝土类似,均有随水泥用量提高而强度提高的趋势,但随着所配制的混凝土强度等级的提高,再生轻骨料混凝土的强度提高趋势下降.以全废砖为骨料适合配制强度等级LC30及以下的再生轻骨料混凝土.  相似文献   

12.
One of the environmental issues in most regions of Iran is the large number of bottles made from poly-ethylene terephthalate (PET) deposited in domestic wastes and landfills. Due to the high volume of these bottles, more than 1 million m3 landfill space is needed for disposal every year. The purpose of this experimental study was to investigate the possibility of using PET waste in asphalt concrete mixes as aggregate replacement (Plastiphalt) to reduce the environmental effects of PET disposal. For this purpose the mechanical properties of plastiphalt mixes were compared with control samples. This study focused on the parameters of Marshall stability, flow, Marshall quotient (stability-to-flow ratio) and density. The waste PET used in this study was in the form of granules of about 3 mm diameter which would replace (by volume) a portion of the mineral coarse aggregates of an equal size (2.36-4.75 mm). In all prepared mixes the determined 6.6% optimum bitumen content was used. In this investigation, five different percentages of coarse aggregate replacement were used. The results showed that the aggregate replacement of 20% by volume with PET granules would result in a reduction of 2.8% in bulk compacted mix density. The value of flow in the plastiphalt mix was lower than that of the control samples. The results also showed that when PET was used as partial aggregate replacement, the corresponding Marshall stability and Marshall quotient were almost the same as for the control samples. According to most of specification requirement, these results introduce an asphalt mix that has properties that makes it suitable for practical use and furthermore, the recycling of PET for asphalt concrete roads helps alleviate an environmental problem and saves energy.  相似文献   

13.
Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste.In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10 mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5 mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 °C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.  相似文献   

14.
Sustainable development has become a major focus for engineers and planners as part of their collective efforts in finding, developing and integrating environmental-friendly solutions for material recycling and waste management into design and construction of civil engineering infrastructure. In the past three decades, there has been an increase in recycling and application of waste materials into the concrete to decrease costs and improve material properties of the concrete. Significant growth in automobile manufacturing industry and increased rubber tire supply for vehicles suggested the application of waste tire particles as concrete aggregates to minimize the ecological footprint of the rubber tire waste due to its recycling process difficulties. In this paper, the effect of rubber tire particles on compressive and dynamic strength of concrete specimens with different particle percentiles was tested on more than 55 cylindrical specimens. To achieve the optimal mix design properties of rubber tire concrete specimens, both fine and coarse aggregates got replaced by fine and coarse rubber particles. Introduction of rubber tire particles as coarse and fine aggregate reduces the brittleness of the concrete and provides more flexible aggregate bonding which ultimately improves the dynamic resistance of the concrete. It increases the concrete workability and provides environmental-friendly and cost-effective solutions in using recycled materials for concrete construction applications.  相似文献   

15.
An experimental investigation was carried out to study the effects of various percentages of fine/coarse tire waste and microsilica at various temperatures on the compressive strength of concrete. The compressive strength of concrete mixtures made with tire rubber was assessed statistically with those of concrete containing microsilica and conventional concretes in order to evaluate the usefulness of recycling rubber waste as a component of concrete. Results confirmed that the recipe and processing temperature of concrete cubes influence the compressive strength values. Generally, the use of microsilica or fine rubber mixed with microsilica as aggregate replacement of 5% by volume improved the compressive strength of concrete processed at a temperature of 150°C. The addition of coarse rubber did not achieve any increase in strength when used as an aggregate replacement at any percentage. Moreover, the reductions in the compressive strength of concrete mixes at higher temperatures were much smaller for the fine rubber with 5 vol% microsilica than those for control and coarse rubber mixes. The specimens made with fine rubber and 5 vol% microsilica at elevated temperatures above 400°C appeared to show very similar compressive strength values. The use of fine rubber in building construction could help save energy and reduce costs and solve the solid waste disposal problem posed by this type of waste.  相似文献   

16.
Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.  相似文献   

17.
The environmental problem posed by construction and demolition waste (C&D waste) is derived not only from the high volume produced, but also from its treatment and disposal. Treatment plants receive C&D waste which is then transformed into a recycled mixed aggregate. The byproduct is mainly used for low-value-added applications such as land escape restoration, despite the high quality of the aggregate. In the present work, the chemical composition properties and grading curve properties of these aggregates are defined. Furthermore, the resulting recycled concrete with a high proportion of recycled composition, from 20% to 100% replacement of fine and coarse aggregate, is characterized physically and mechanically. An environmental study of the new construction material when all aggregates are substituted by C&D waste shows a low toxicity level, similar to that of other construction materials. The new material also has improved properties with respect to standard concrete such as high fire resistance, good heat insulation, and acoustic insulation.  相似文献   

18.
The rise in discarded or unwanted medications (UMs) is becoming an issue of great concern, as it has the potential to harm the components of the environment where it is discarded: particularly air, water and soil. To combat this problem, many researchers have investigated the best approach for the collection and proper disposal of UMs. This paper intends to elaborate upon a safe solution for treating this waste, specifically through a process of solidification/stabilization (S/S) that involves mixing UMs with asphalt cement and asphalt concrete mixtures. Volumes of 5, 10, 15 and 20 % of a mixture of UMs were mixed with asphalt cement and the analyzed properties of the mixture of UMs–asphalt included: softening point, ductility, penetration, flash and fire points, specific gravity and rotational viscosity. Marshal stability, flow, air voids, unit weight, voids in mineral aggregate (VMA) and voids filled with binder (VFB) of asphalt concrete mixture were also investigated. Results showed that this approach of S/S is a promising method for dual achievements to solve an environmental problem and to use the waste for road construction.  相似文献   

19.
Matt waste (MW), a by-product of purification processes of cullet derived from separated glass waste collection, has been studied as filler for self-compacting concrete and as an addition for newly blended cement. Properties of self-compacting concrete compared to reference samples are reported. They include characteristics at the fresh and hardened states, and the compressive strength and porosity of mortar samples that were formulated with increasing amounts of MW to be used as cement replacement (up to 50wt.%). The effects of matt waste are discussed with respect to the mechanical and microstructural characteristics of the resulting new materials.  相似文献   

20.
The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases, and specifically to the patches of cement that remain attached to the surface of natural aggregates. This phase increases water absorption and compromises the consistency and strength of concrete made from recycled aggregates. Mineral processing has been applied to CDW recycling to remove the patches of adhered cement paste on coarse recycled aggregates. The recycled fine fraction is usually disregarded due to its high content of porous phases despite representing around 50% of the total waste.This paper focus on laboratory mineral separability studies for removing particles with a high content of cement paste from natural fine aggregate particles (quartz/feldspars). The procedure achieved processing of CDW by tertiary impact crushing to produce sand, followed by sieving and density and magnetic separability studies. The attained results confirmed that both methods were effective in reducing cement paste content and producing significant mass recovery (80% for density concentration and 60% for magnetic separation). The production of recycled sand contributes to the sustainability of the construction environment by reducing both the consumption of raw materials and disposal of CDW, particularly in large Brazilian centers with a low quantity of sand and increasing costs of this material due to long transportation distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号