首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The purpose of this study was to evaluate the production feasibility of triaxial whiteware using sand from cast iron moulds as a raw material instead of silica, and recycled glass in place of feldspar. Formulations were prepared using sand, glass waste, and white-firing clay such that only 50% of the composition was virgin material (clay). The ceramic bodies were formed by pressing and fired at different temperatures (between 1100 and 1300 degrees C). Specimens were characterized in terms of green density prior to firing; and their flexural strength, linear shrinkage, and water absorption were measured after firing. The microstructure was determined by scanning electron microscopy. Possible environmental impacts of this recycling process were also evaluated, through solubility and leaching tests, according to Brazilian standards. Gaseous emissions during the firing process were also analysed. The results showed that it is possible to produce triaxial ceramics by using such alternative raw materials.  相似文献   

2.
Recent improvements in field‐portable analytical equipment allow accurate on‐site measurement of VOCs present in air at concentrations of less than 0.1 parts per million volume (ppmv). The objective of this project is to determine if the use of these instruments for vapor‐phase measurements of headspace in a monitoring well can serve as a reliable and accurate method for monitoring volatile organic compound (VOC) concentrations in groundwater under equilibrium conditions. As part of a comprehensive research project investigating the utility of this proposed monitoring method, the authors have completed a laboratory validation study to identify instruments and sample‐collection methods that will provide accurate measurement of VOC concentrations in groundwater. This laboratory validation study identified two field‐portable instruments (a gas chromatograph and a photoionization detector) with sufficient sensitivity to measure VOCs in groundwater at concentrations below typical monitoring standards (i.e., 1 to 5 μg/L). The accuracy and precision of these field instruments was sufficient to satisfy typical data‐quality objectives for laboratory‐based analysis. In addition, two sample‐collection methods were identified that yield vapor‐phase samples in equilibrium with water: direct headspace sampling and passive diffusion samplers. These sample‐collection methods allow the field instruments (which measure VOC concentrations in vapor‐phase samples) to be used to measure VOC concentrations in water. After further validation of these sample‐collection methods in the field, this monitoring method will provide a simple way to obtain accurate real‐time measurements of VOC concentrations in groundwater using inexpensive field‐portable analytical instruments. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
A series of tests to burn mixtures of tar pond sludge and coal was carried out using a mini‐circulating fluidized bed combustor (mini‐CFBC). During the tests, carbon dioxide, oxygen, carbon monoxide, sulfur dioxide, and nitrogen oxides in the flue gas were monitored continuously. Stack gas sampling was carried out for hydrochloric acid, metals, particulate matter, volatile organic compounds (VOCs), total hydrocarbons, semivolatile organic compounds (SVOCs), dioxins and furans (PCDD/Fs), and polychlorinated biphenyls (PCBs). Results showed that hydrochloric acid, mercury, particulate matter, PCDD/F, and metal concentrations were all below both the current limits and the gas‐release limits to be implemented in 2008 in Canada. The new 2008 emissions limits will reduce the maximum allowable concentrations of most pollutants by half. Thus, the maximum concentration for particulate matter will be 5 mg/m3 (from the current maximum concentration of 10 mg/m3);the maximum concentration for hydrochloric acid will be 5 mg/m3 (from 10 mg/m3); and the‐maximum concentration for dioxins and furans will be 0.032 ng/m toxic equivalent (from 0.08 ng/mcurrently). Sulfur capture efficiency was 89–91 percent. The percentage of fuel nitrogen converted to nitrogen oxides was of the order of 4.7 to 6.1, which is significantly lower than that of conventional pulverized coal‐fired boilers and well within the normal range for fluidized bed combustors (FBCs). PCB and polycyclic aromatic hydrocarbon (PAH) emissions levels were comparable or lower than levels reported in the literature for industrial‐scale FBCs. VOC concentrations were low except for benzene, for which the concentration was higher than that reported for pulverized coal‐fired utility boilers. In addition, carbon monoxide concentration was high at 1,200 to 2,200 parts per million. However, these carbon monoxide concentrations are typical of the mini‐CFBC firing coal. The trials showed that for 10 percent by weight tar pond sludge mixed with 90 percent by weight coal, the combustion was both stable and efficient. The tests demonstrated that CFBC technology is an environmentally sound option for eliminating tar pond waste sludge. © 2005 Wiley Periodicals, Inc.  相似文献   

4.
The distribution of volatile organic compounds (VOCs) in fractured shale overlain by thin (< 10 feet) overburden at the Watervliet Arsenal near Albany, New York, was initially determined by sampling water from the fracture network using packer systems in boreholes and also using conventional monitoring wells. Furthermore, short‐term pumping and injection tests were conducted and the boreholes were logged using a variety of geophysical and hydrophysical tools. Tetrachloroethene is the dominant VOC in the groundwater, with lesser concentrations of trichloroethene and degradation products (cis‐1,2‐dichloroethene, trans‐1,2‐dichloroethene, and vinyl chloride). The vertical VOC distributions in the rock matrix were obtained from continuous‐cored holes from which small rock samples, collected at many depths between 18 and 150 feet below ground surface, were analyzed. The rock core VOC concentrations were determined by methanol extraction of crushed rock followed by direct methanol injection onto a gas chromatograph and subsequent estimation of rock porewater VOC concentrations. The rock core data support the concept that diffusion‐driven mass transfer has caused nearly all the VOC mass initially present in the fractures to now reside in the rock matrix, which has a porosity three or four orders of magnitude larger than the bulk fracture porosity. The results of the site characterization indicate that an effective site investigation strategy in fractured shale must include characterization of both the fracture and matrix contaminant distribution. These results also indicate that the most favorable remediation technologies for this fractured shale are those that will destroy VOCs in the rock matrix, particularly contaminants in the sorbed phase, and also destroy the VOC mass in the fractures including both dissolved and immiscible phases. The site characterization resulted in the selection of potassium permanganate for an in situ chemical oxidation pilot study. © 2004 Wiley Periodicals, Inc.  相似文献   

5.
As a first step to work out an abatement plan against air pollution, a local emission inventory with 1 hr temporal and 1 km spatial resolution in the city of Izmir and its surroundings was prepared. The study area consisted of a 200 × 170 km2 rectangle having the city of Izmir at the centre. The studied pollutants were total particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), volatile organic compounds (VOC) and carbon monoxide (CO). Emissions of these pollutants were determined by estimation methods making use of suitable emission factors. Emission sources were evaluated in three categories; point, area and line sources. For year 2000 total emissions in the study area on an average day were estimated as 173 tons PM, 299 tons SOx, 136 tons NOx, 68 tons VOC and 320 tons CO. At the second part of the study, calculated emissions were transformed into air quality predictions in the area by using the Industrial Source Complex – Short Term (ISCST3) dispersion model. Model results were tested with monitoring data from urban air quality stations obtained during the year 2000. Results of the past, present and future air quality estimates in the region were discussed. In order to do so, future scenarios including various control technology applications were formulated and tested to see their effect on the future air quality.  相似文献   

6.
An adaptation procedure of a new emission inventory of theGreater Athens Area is attempted, based on a sensitivityanalysis on the treatment of the VOC emissions. Throughthis procedure the impact that a more detailed treatment ofthe VOCs emissions might have on the atmospheric chemistrysimulations, is examined. For this analysis three differentchemical mechanisms were applied for two differentlocations (urban and city plume) with different VOC andNOx mixture characteristics. Finally, this studyrecommends new carbon fractions, reflecting the localconditions in Athens basin.  相似文献   

7.
The U.S. Navy Public Works Center (PWC) Environmental Department, San Diego, California, is home to the Navy West Coast Site Characterization and Analysis Penetrometer System (SCAPS). SCAPS has been extensively used at several Navy sites since 1995 to provide real‐time, high‐density data sets. The U.S. Environmental Protection Agency's Triad approach provided an ideal framework for optimizing the use of the Navy SCAPS during a volatile organic compound (VOC) source investigation at Installation Restoration Site 1114 at Marine Corps Base Camp Pendleton. All three elements of Triad—systematic planning, dynamic work strategy, and use of real‐time measurement tools—were implemented to manage decision uncertainty and expedite the site management process. The investigation was conducted using the Navy SCAPS, outfitted with a cone penetrometer, membrane interface probe, and a direct sampling ion trap mass spectrometry detector, which allowed for real‐ time collection of over 690 feet of continuous lithologic information and VOC concentration data. These data were used collaboratively with 24‐hour turnaround US EPA 8260B VOC groundwater results from temporary direct‐ push wells to support the conclusion of a limited source area. Implementation of the Triad approach for this investigation provided an expedited high‐density data set and a refined conceptual site model (CSM) in real time that resulted in cost savings estimated at $2.5M and reduction of the site characterization and cleanup schedule by approximately three years. This project demonstrates how the US EPA's Triad approach can be applied to streamline the site characterization and cleanup process while appropriately managing decision uncertainty in support of defensible site decisions. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
Environmental impacts associated to different waste treatments are of interest in the decision-making process at local, regional and international level. However, all the environmental burdens of an organic waste biological treatment are not always considered. Real data on gaseous emissions released from full-scale composting plants are difficult to obtain. These emissions are related to the composting technology and waste characteristics and therefore, an exhaustive sampling campaign is necessary to obtain representative and reliable data of a single plant. This work proposes a methodology to systematically determine gaseous emissions of a composting plant and presents the results obtained in the application of this methodology to a plant treating source-separated organic fraction of municipal solid waste (OFMSW) for the determination of ammonia and total volatile organic compounds (VOC). Emission factors from the biological treatment process obtained for ammonia and VOC were 3.9 kg Mg OFMSW−1 and 0.206 kg Mg OFMSW−1 respectively. Emissions associated to energy use and production were also quantified (60.5 kg CO2 Mg OFMSW−1 and 0.66 kg VOC Mg OFMSW−1). Other relevant parameters such as energy and water consumption and amount of rejected waste were also determined. A new functional unit is presented to relate emission factors to the biodegradation efficiency of the composting process and consists in the reduction of the Respiration Index of the treated material. Using this new functional unit, the atmospheric emissions released from a composting plant are directly related to the plant specific efficiency.  相似文献   

9.
Emissions from open burning of military food waste and ration packaging compositions were characterized in response to health concerns from open burning disposal of waste, such as at military forward operating bases. Emissions from current and prototype Meals, Ready-to-Eat (MREs), and material options for their associated fiberboard packaging were quantified to assess contributions of the individual components. MREs account for 67–100% of the particulate matter (PM), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins and -furans (PCDDs/PCDFs) emissions when burned in unison with the current fiberboard container and liner. The majority of the particles emitted from these burns are of median diameter 2.5 µm (PM2.5). Metal emission factors were similar regardless of waste composition. Measurements of VOCs and PAHs indicate that targeted replacement of MRE components may be more effective in reducing emissions than variation of fiberboard-packaging types. Despite MRE composition variation, equivalent emission factors for PM, PAH, VOC, and PCDD/PCDF were seen. Similarly, for fiberboard packaging, composition variations exhibited essentially equivalent PM, PAH, VOC, and PCDD/PCDF emission factors amongst themselves. This study demonstrated a composition-specific analysis of waste burn emissions, assessing the impact of waste component substitution using military rations.  相似文献   

10.
Trading of greenhouse gas (GHG) emission reductions is an attractive approach to help producers implement cleaner treatment technologies to replace current anaerobic lagoons. Our objectives were to estimate greenhouse gas (GHG) emission reductions from implementation of aerobic technology in USA swine farms. Emission reductions were calculated using the approved United Nations framework convention on climate change (UNFCCC) methodology in conjunction with monitoring information collected during full-scale demonstration of the new treatment system in a 4360-head swine operation in North Carolina (USA). Emission sources for the project and baseline manure management system were methane (CH4) emissions from the decomposition of manure under anaerobic conditions and nitrous oxide (N2O) emissions during storage and handling of manure in the manure management system. Emission reductions resulted from the difference between total project and baseline emissions. The project activity included an on-farm wastewater treatment system consisting of liquid-solid separation, treatment of the separated liquid using aerobic biological N removal, chemical disinfection and soluble P removal using lime. The project activity was completed with a centralized facility that used aerobic composting to process the separated solids. Replacement of the lagoon technology with the cleaner aerobic technology reduced GHG emissions 96.9%, from 4972 tonnes of carbon dioxide equivalents (CO2-eq) to 153 tonnes CO2-eq/year. Total net emission reductions by the project activity in the 4360-head finishing operation were 4776.6 tonnes CO2-eq per year or 1.10 tonnes CO2-eq/head per year. The dollar value from implementation of this project in this swine farm was US$19,106/year using current Chicago Climate Exchange trading values of US$4/t CO2. This translates into a direct economic benefit to the producer of US$1.75 per finished pig. Thus, GHG emission reductions and credits can help compensate for the higher installation cost of cleaner aerobic technologies and facilitate producer adoption of environmentally superior technologies to replace current anaerobic lagoons in the USA.  相似文献   

11.
This paper presents a case study of a Long Island. New York, landfill where methane and VOC gases were migrating off-site. The municipally owned and operated Port Washington Landfill located adjacent to residential housing was opened in 1974 and was placed on the U.S. EPA Superfund (rehabilitation) list in 1982 because of odour complaints. Community concerns have focused on combustible gases, odour control, and exposure to trace contaminants. A comprehensive data base and corrective action program was initiated to determine: (1) the extent of off-site volatile organic compounds (VOC) migration; (2) measures to control migration and emissions; and (3) impacts on VOC concentrations under residential areas. Full data reports and monthly interpretations have been provided to the citizenry. Results to date indicate that start-up and operation of the extraction system have significantly reduced off-site VOC concentrations.  相似文献   

12.
The main objective of this work is to analyse how uncertainties in emission data of nitrogen oxides (NOx) and volatile organic compounds (VOC), originated from road traffic, influence the model prediction of ozone (O3) concentration fields. Different methods to estimate emissions were applied and results were compared in order to obtain their variability. Based on these data, different emission scenarios were compiled for each pollutant considering the minimum and the maximum values of the estimated emission range. These scenarios were used as input to the MAR-IV mesoscale modelling system. Simulations have been performed for a summer day in the Northern Region of Portugal. The different approaches to estimate NOx and VOC traffic emissions show a significant variability of absolute values and of their spatial distribution. Comparison of modelling results obtained from the two scenarios presents a dissimilarity of 37% for ozone concentration fields as a response of the system to a variation in the input emission data of 63% for NOx and 59% for VOC. Far beyond all difficulties and approximations, the developed methodology to build up an emission data base shows to be consistent and an useful tool in order to turn applicable an air quality model. Nevertheless, the sensitivity of the model to input data should be considered when it is used as a decision support tool.  相似文献   

13.
This paper presents a methodological approach for the study of volatile organic compounds (VOCs) in air, emitted during storage of municipal solid waste in bales. Determination of VOCs was based on sampling with adsorbent tubes followed by automated analysis using on-line work-up with a thermal desorption unit directly connected to a gas chromatograph-mass spectrometer. Using calculation algorithms and multidimensional statistical analysis of large amounts of data collected, the information was compressed and visualized. The approach was applied to initial measurements of emissions of VOCs from 24 bales composed of municipal solid waste, each bale stored in a wooden box. These bales were produced using the two types of baling equipment available, resulting in cylindrical or rectangular bales, with different densities. Hundreds of different VOCs emitted from these bales sorted out into groups with different chemical structure. Differences in VOC concentrations in air were found between wastes stored in cylindrical or rectangular bales. For instance, it was found that the concentration of VOCs (relative to the concentration of toluene), in the first experiment after storing, for cylindrical bales with six layers of LDPE was 115 +/- 10 microg m(-3), while for rectangular bales it was only 64 +/- 8 microg m(-3). The procedure used for data interpretation suggested different degradation mechanisms in different types of bales. The use of multiple data interfaces, multidimensional statistics and automated chemical analysis methods are likely to be more and more common for waste companies and waste research in the near future. This is due to the interdisciplinary nature of the subject that relies heavily on various areas of science and information technology.  相似文献   

14.
Volatilization and Biodegradation of VOCs in Membrane Bioreactors (MBR)   总被引:1,自引:0,他引:1  
Volatilization and biodegradation are major competitive volatile organic compound (VOC) removal mechanisms in biological wastewater treatment process, which depend on compound specific properties and system design/operational parameters. In this study, a mathematical model was used to determine major removal pathways at various organic loading rates (OLR), solids residence time (SRT) and dissolved oxygen (DO) concentrations in a biological process for vinyl acetate. Model results showed that biological treatment process should be designed with long SRT, high OLR and low DO concentrations to maximize biodegradation and minimize volatilization of VOCs. Unless a VOC is toxic to microorganisms under the given conditions, low VOC emission rates are an inherent advantage of MBRs, which operate at higher OLR and longer SRT compared to conventional activated sludge process. A lab scale membrane bioreactor (MBR) was operated at varying OLR to investigate the relative volatilization and biodegradation rates for acetaldehyde, butyraldehyde and vinyl acetate. Synthetic wastewater containing three VOCs was introduced to the MBR. The DO concentration and SRT was maintained at 2.0 mg L− 1 and 100 days, respectively. The overall VOC removal rate was more than 99.7% for three VOCs at all the OLR. For vinyl acetate, the biodegradation rate increased from 93.87 to 99.40% and the volatilization removal rate decreased from 6.09 to 0.59% as OLR was increased from 1.1 to 2.0 kg COD m− 3 d− 1. It was confirmed that a MBR can be a promising solution to reduce VOC emissions from wastewater.  相似文献   

15.
The US EPA's current regulatory approach for combustion and incineration sources considers the use of real-time continuous emission monitors (CEMs) for particulate, metals, and organic compounds to monitor source emissions. Currently, the CEM technologies to support this approach have not been thoroughly developed and/or demonstrated. The EPA's Air Pollution Prevention and Control Division has developed a near-real-time volatile organic compound (VOC) CEM, using an on-line gas chromatograph (OLGC), capable of measuring over 20 VOCs at concentrations typically present in well-operated combustion systems. The OLGC system consists of a sample delivery system, a sample concentrator, and a GC equipped with both flame ionization and electron capture detectors. Application of the OLGC system was initially demonstrated through participation in the 1995 US EPA/DOE CEM demonstration program. Additional work has improved system performance, including increased automation and improved calibration technique. During pilot-scale incineration testing, measurement performance was examined in detail through comparisons to various CEM performance criteria. Specifically, calibration error, calibration drift error, and system bias were examined as a function of full scale (absolute error) and gas concentration (relative error). Although OLGC measurement performance was not able to meet standard EPA CEM measurement performance criteria, measurement performance was encouraging. The system demonstrated the ability to perform hourly trace level VOC measurements (0–100 ppbv) for as many as 23 different VOCs with boiling points ranging from −23.7 to 180.5 °C at a known level of measurement performance. This system is a suitable alternative to VOC reference method measurements which may be performed only intermittently.  相似文献   

16.
The odorous air emissions from confined animal feeding operations (CAFOs), such as swine, poultry and dairy farms, are increasingly raising community complaints. Odorous emissions can result in health damages, psychological discomforts and adverse aesthetic effects in the community. However, these emissions are not well characterized up to now due to the lack of legislation, the limitations in sampling and instrumentation techniques, and the complexity of the emissions themselves. This study is aimed at the development of a high volume sampler and sorbent assembly to identify the odor causing compounds from a diary CAFO. The sorbent was custom designed to target the potential compounds that may exist in a dairy farm and was validated in laboratory with a synthetic odor from the swine manure. The actual samples at the diary farm were collected in spring and summer of 2005. The sorbents were solvent extracted and individual odor compounds were identified using GC–MS (gas chromatography–mass spectroscopy). The data obtained indicated that high volume sampling can shorten the sampling time from days to within 4 h. Both volatile organic compounds (VOCs) and volatile fatty acids (VFAs) have been identified from the dairy farm, such as phenol, methylphenol, 4-ethyl phenol, indole, methyl indole, benzyl alcohol, hexanoic acid, valeric acid and iso-valeric acid, together with some nitrogen containing compounds that have not been reported before.  相似文献   

17.
Due to initiatives such as the clean development mechanism (CDM), reducing greenhouse gas emissions for a developing country can offer an important route to attracting investment in a variety of qualifying project areas, including waste management. To date CDM projects have been largely confined to schemes that control emission from landfill, but projects that avoid landfilling are beginning to be submitted. In considering the waste options which might be suitable for developing countries certain ones, such as energy from waste, have been discounted for a range of reasons related primarily to the lack of technical and other support services required for these more sophisticated process trains. The paper focuses on six options: the base case of open dumping; three options for landfill (passive venting, gas capture with flaring, and gas capture with energy production), composting and anaerobic digestion with electricity production and composting of the digestate. A range of assumptions were necessary for making the comparisons based on the effective carbon emissions, and these assumptions will change from project to project. The highest impact in terms of carbon emissions was from using a sanitary landfill without either gas flaring or electricity production; this was worse than the baseline case using open dumpsites. Landfills with either flaring or energy production from the collected gas both produced similar positive carbon emissions, but these were substantially lower than both open dumping and sanitary landfill without flaring or energy production. Composting or anaerobic digestion with energy production and composting of the digestate were the two best options with composting being neutral in terms of carbon emissions and anaerobic digestion being carbon negative. These generic conclusions were tested for sensitivity by modifying the input waste composition and were found to be robust, suggesting that subject to local study to confirm assumptions made, the opportunity for developing CDM projects to attract investment to improved waste management infrastructure is significant. Kyoto credits in excess of 1 tCO2e/t of waste could be realised.  相似文献   

18.
The mechanical–thermal properties and volatile organic compound (VOC) emissions of natural-flour-filled, biodegradable polymer bio-composites were investigated according to variation in porous inorganic filler types. At a porous inorganic filler content of 3%, the tensile and flexural strengths of the hybrid bio-composites were not significant changed. However, the coefficient of thermal expansion and thermal expansion of the bio-composites were slightly decreased. Furthermore, the incorporation of the porous inorganic materials into bio-composites slightly increased the E’ values of the hybrid bio-composites over the entire temperature range, although the tan δmax temperature (T g) of the hybrid bio-composites was not significantly changed. At a porous inorganic filler content of 3%, the various odor and VOC emissions of the hybrid bio-composites were significantly decreased because the various oxidation and thermal degradation gases of the natural flour and matrix were absorbed in the pore structures of the porous inorganic fillers and thereby prevented the migration into the final products.  相似文献   

19.
Locating and quantifying free-phase volatile organic compounds (VOCs) in the subsurface represent one of the more difficult challenges facing hazardous waste site remediation programs. Successful remediation programs require reliable data on the size and extent of potential VOC contamination sources. Improving subsurface quantification of VOCs requires a large number of reliable low-cost samples. Satisfying this objective relies on improved sampling techniques, field analysis of samples, and a modified quality assurance program. This paper describes an integrated approach using conventional split-spoon samplers, microcore sampling, hexane extractions, and a field gas chromatograph with an autosampler as part of a technical demonstration for innovative remediation technologies. Using this approach, it was possible to delineate a subsurface source of free-phase VOCs at a cost of $15 per sample. The distribution of dense nonaqueous phase liquid determined by this sampling approach agreed with the conceptual model for the site.  相似文献   

20.
The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC–MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides.The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed.Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号