首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Benthic epifauna in three areas of the northern North Sea was studied from 1999 to 2007 to investigate the effect of temperature changes on community structure and species abundance and biomass. Abundance and/or biomass of 16 epifauna species was significantly correlated with temperature anomalies of the mean sea surface temperature (SST) from 1971 to 2000. The response of species to SST changes was different in the study areas depending on species life history and, most likely on food supply, which in turn is strongly influenced by the timing and duration of primary production and regional hydrographical conditions (e.g. stratification). Also, changes in community structure were obvious in the three areas between 2002 and 2003 coinciding with high temperature anomalies and SST. On the other hand, these changes were mainly caused by the variability in abundance of dominant species and altogether no clear trends in community structure were found. In contrast to epifauna communities in the shallow southern North Sea temperature changes in the northern North Sea affected only single epifauna species until now.  相似文献   

2.
The changes in a tropical demersal fish community in the southeast Gulf of Carpentaria, Australia, were examined by comparing the results of a survey undertaken in 1964 before the area was fished, with two surveys in 1985 and 1986 after 20 yr of commercial trawl fishing. The numerical abundance of 52 of the 82 fish taxa had not changed significantly, but that of 18 had decreased while 12 had increased. One taxon (Paramonacanthus spp.) had decreased by more than 500 times and another (Saurida micropectoralis) had increased substantially in abundance. The changes occurred throughout the area surveyed, but the largest changes were offshore. In the pre-trawling community most taxa were caught mainly during the night, while in the post-trawling community most were caught in the same numbers during day and night. In 10 of the 30 taxa that changed in abundance, changes were within a family and could not be explained. For the remaining 20, the changes could be related to their position in the water column: benthic taxa decreased and bentho-pelagic taxa increased. The changes were assessed in relation to fishing effort, and changes in the mud content of the substrate in the study area. Although the changes did not correlate with the fishing effort among three zones in the study area, it is suggested that fishing effort and discarding of the by-catch caused the change in 18 taxa. The magnitude of the decreases of some species might be related to changes in the sediment or possibly other long-term environmental change. There was also a change in the diel behaviour in the fish community that perhaps may be related to the effects of fishing on a tropical multispecies fish community.  相似文献   

3.
Leaf epifauna of the seagrass Thalassia testudinum   总被引:1,自引:0,他引:1  
The abundance, composition and trophic relationships of metazoan leaf epifauna of the marine angiosperm Thalassia testudinum König were studied in Barbados, West Indies. Approximately 90 species from 11 phyla consisted chiefly of nematodes, harpacticoid copepods, crustacean nauplii, ostracods, and turbellarians. Epiflora- and detritus-feeders dominated the epifauna. Increasing leaf epiphytism was accompanied by faunal changes, most notably increased nematode, harpacticoid and polychaete density. Faunal composition was very similar to that of the temperate seagrass analogue Zostera marina.  相似文献   

4.
K. Oishi  M. Saigusa 《Marine Biology》1999,133(2):237-247
Temporal fluctuations of abundance (or emergence) in small benthic and planktonic crustaceans were studied in shallow subtidal waters (1.5 to 3.5 m in tide height). The abundances were more or less rhythmic, and showed wide diversity ranging from very clear nocturnal patterns to patterns in sychrony with the tidal cycle alone. These abundance patterns were classified into categories relating to the degree of synchrony with day/night and tidal cycles. Nocturnal patterns were especially strong in benthic crustaceans, which would be inactive during the daytime, being attached to algae and stones or disappearing into rock crevices, and actively swim in the water at night. Mysis larvae also showed a clear nocturnal pattern. Their lifestyle might be similar to that of many benthic animals. Other planktonic crustaceans drifting in the water showed weak nocturnal patterns. In some planktonic crustaceans (e.g., Calanoida), the ratio of abundance in the surface and bottom samples was reversed between day and night. Their pattern might be a manifestation of weak diel vertical movement between day and night. Furthermore, most patterns of zooplankton and benthos were modified in synchrony with tides to various degrees. Small crustaceans may respond to changes of hydrologic variables fluctuating with the tides, which may exogenously produce a weak tidal component in their emergence patterns. Received: 12 January 1998 / Accepted: 29 August 1998  相似文献   

5.
Collections of fishes from seagrass meadows along the coast of the Republic of Panamá and the Canal Zone during 1974–1975 revealed that juveniles of reefassociated predators are common in this habitat. There are also important diurnal changes in species composition: members of the families Pomadasyidae, Lutjanidae, Sciaenidae, Apogonidae and Muraenidae were noticeably more abundant in the seagrass meadows at night. Although there were significant differences in species composition and abundance among sampling sites, seasonal differences within sites appeared to be insignificant. The ichthyofauna of the Panamanian seagrass beds is significantly richer than that of similar habitats which have been studied in the Gulf of Mexico. This difference in species richness appears to be due in part to the influence of nearby coral reefs, which add an additional structural dimension to the habitat.  相似文献   

6.
K. Walters 《Marine Biology》1991,108(2):207-215
The emergence of meiobenthic copepods in subtidal sand and seagrass sites in Tampa Bay, Florida (USA), was investigated on nine dates from March 1983 to August 1984. Numbers of emerging copepods were dependent on habitat, date and diel sampling period. Greater numbers typically emerged in seagrass sites, and differences between habitats may be related to lower copepod abundances in sand sites. Both copepod abundance and behavior significantly affected numbers emerging among dates. An increase in emergent behavior alone resulted in consistently greater numbers emerging during postsunset periods. Over 30 species in 15 families were found to emerge. Total numbers of emerging copepods were affected by the sporadic presence and seasonal behavior of certain species. Numbers of the predominant speciesParadactylopodia brevicornis, Tisbe furcata, Parategastes sp.,Mesochra pygmea, Laophontid sp., andHarpacticus sp. emerging depended on differences in both species abundance and behavior. The emergent behavior ofParategastes sp.,Harpacticus sp., andT. furcata also was influenced by total copepod densities in the sediment. Juvenile copepods constituted only a small proportion of the total numbers emerging. The consistent postsunset entry of between 103 to 105 copepods m?2 into the water column in subtidal sand and seagrass habitats will contribute to the increased probability of copepod dispersal and reassortment of the benthic community, while providing a pathway for benthic-pelagic exchange.  相似文献   

7.
Seasonal and diel variations in community structure and abundance of coral-reef lagoon mysids were examined at Davies Reef in the central region of the Great Barrier Reef (GBR) between June 1980 and May 1981. Twenty-five mysid species belonging to three subfamilies of the family Mysidae were captured during the study, with six new records for the GBR. The epibenthic mysid community differed from that in the overlying water, was faunistically uniform, but formed characteristic seasonal and diel groupings. The dominant epibenthic species were Erythrops sp., Anisomysis pelewensis, Doxomysis littoralis, A. laticauda, Prionomysis stenolepis, A. lamellicauda, and A. australis, five of which formed schools. Total mysid abundances ranged between 110 and 790 m-3 with peak abundance in October. Schooling species occurred at local densities of up to 500 000 m-3. Mysids were absent from shallow and midwater depths during the day, but were distributed throughout all depths at night with peak abundances in mid-water and deep layers. The dominant species in the water column at night were Pseudanchialina inermis, A. laticauda and Gastrosaccus indicus, in descending order of abundance. Lagoonal mysids contribute little to the food of sessile reef planktivores, as all but three species remain concentrated near or on the lagoon floor both day and night. The contribution of resident lagoon mysids to reef trophodynamics is probably through remineralization of lagoon detritus. Given the vast reef areas comprised of sandy lagoons, the large populations and relatively large size of lagoon mysids, this trophodynamic role may be of considerable importance.A.I.M.S. Contribution No. 477  相似文献   

8.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

9.
The effect of diel and seasonal changes in the distribution of fishes on a subtropical sandy beach on the southeastern coast of Brazil were studied. Seine netting was carried out on both seasonal and diel scales between July 1998 and June 1999. A total of 46 fish species was recorded, six being numerically dominant: Anchoa tricolor, Gerres aprion, Harengula clupeola, Atherinella brasiliensis, Mugil liza and Diapterus rhombeus. Seasonal changes in abundance of dominant species were detected. Species dominant in winter were Anchoa tricolor, H. clupeola and Atherinella brasiliensis; in spring, Anchoa tricolor and G. aprion; in summer G. aprion and D. rhombeus; and in autumn M. liza and H. clupeola. Overall, diel patterns did not reveal any significant trends; however, if we consider each season separately, an increase in A. tricolor abundance was recorded during the day in winter/spring, being replaced at night by H. clupeola in winter, and by G. aprion in spring. Increases in number of individuals and biomass at sunset, and decreases during the night were recorded. The winter/spring inshore/offshore movements at diel scale performed by the three most abundant species demonstrate that diel fluctuation acts more at a species-specific level than at a structural one; in summer there was no evidence of diel movements due to a heavy influx of G. aprion and D. rhombeus, which use the area throughout day and night, increasing overall abundance. Seasonal movements seems to be related to ontogenetic change in species, while diel movements in the fish assemblage seem to be more related to physiological requirements, such feeding activity of each particular species, than to physico-chemical conditions.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

10.
The macrofaunal colonization of isolated habitats is affected by many factors, ranging from distance to the nearest source population to the dispersal mechanism of the species. We investigated the initial epifaunal colonization at two sites, one situated in the Northern Gulf of Mexico and the other in the Northern Baltic Sea. At each site, artificial seagrass units were placed at 10- and 20-m distances from a continuous seagrass meadow, as well as inside the meadow over a 5-day colonization time. With the exception of amphipods in Gulf of Mexico, patch isolation had a negative effect on colonization for the other faunal species, irrespective of the sites. This inverse colonization pattern of amphipods suggests that they are not equally sensitive to patch isolation in different regions. Our results indicate that increasing habitat isolation can have serious consequences for the community composition of seagrass epifauna. Furthermore, we emphasize the need for larger-scale latitudinal comparative studies.  相似文献   

11.
The presence of mesopelagic organisms in the guts of surface-foraging seabirds feeding in open areas within seasonal pack ice in the Antarctic has given rise to questions regarding the effects of pack ice on the underlying mesopelagic community. Bottom-moored free-vehicle acoustic instruments were used in concert with midwater trawls and baited traps to examine the abundance, size distribution and vertical distribution of pelagic organisms in the uppermost 100 m of the water column during the austral spring of 1992 in two areas of the northwestern Weddell Sea, one covered by seasonal pack icc and the other free of ice cover. Acoustic largets were more abundant and significantly larger at the open-water station than beneath pack ice. However, targets at the ice-covered site exhibited a pronounced diel pattern, with the largest targets detected only at night. Samples from night trawls at the icecovered site contained several species of large, vertically-migrating mesopelagic fishes, whereas these species were absent from trawls taken during the day. In addition, baited traps deployed in pack ice just beneath the ice-water interface collected large numbers of scavenging lysianassoid amphipods, while deeper traps beneath the ice and traps at the open-water station were empty, indicating the presence of a scavenging community associated with the undersurface of the ice. These results sapport the idea that mesopelagic organisms migrate closer to the surface beneath pack ice than in open water, exposing them to possible predation by surface-foraging seabirds.  相似文献   

12.
This study examines the composition and activity of the planktonic community during the polar night in the high Arctic Kongsfjord, Svalbard. Our results are the first published evidence of bioluminescence among zooplankton during the Arctic polar night. The observations were collected by a bathyphotometer detecting bioluminescence, integrated into an autonomous underwater vehicle, to determine the concentration and intensity of bioluminescent flashes as a function of time of day and depth. To further understand community dynamics and composition, plankton nets were used to collect organisms passing through the bathyphotometer along with traditional vertical net tows. Additionally, using a moored bathyphotometer closed to the sampling site, the bioluminescence potential itself was shown not to have a diurnal or circadian rhythm. Rather, our results provide evidence for a diel vertical migration of bioluminescent zooplankton that does not correspond to any externally detectable changes in illumination.  相似文献   

13.
Day-night changes in the vertical distribution, intensity, and size of bioluminescence flashes were investigated during a series of cruises to the northern Sargasso Sea in 1987 and 1988. Overall, depth integrated bioluminescence potential and flash density estimated from in situ measurements with a pumping bathyphotometer were 2 to 5 x higher at midnight than at midday. Depths from 50 to 100 m exhibited the most substantial day to night increases in bioluminescence potential and flash density. When classified by flash size (photon output per flash event), the increase from day to night was significant for all flash sizes, but was most dramatic for small flashes producing <7 x 108 photons flash-1. Bioluminescence potential and flash density increased 2 to 3 x during bathyphotometer measurements made at dusk. Bioluminescent light budgets estimated from day and night net collections in May and August 1987 also predicted 2.5 x higher nighttime than daytime mesoplankton bioluminescence. However, large bioluminescent taxa (mesoplankton) capable of significant vertical migrations only contributed on the order of 15% of the total bioluminescence in surface waters. Our results do not support the idea that most of the nightly increase in bioluminescence potential and flash density are due to vertical migration of bioluminescent organisms; rather they are consistent with an alternate view that photoinhibition of bioluminescent flashing by dinoflagellates may be primarily responsible for the diel patterns.  相似文献   

14.
Samples of zooplankton were collected using a light trap at 5 sites in 3 locations on Heron Reef: (a) near the surface of open water 300 m south of the reef crest; (b) near the surface and at the substratum on the upper reef slope; (c) near the surface and at the substratum on a patch reef in the Heron lagoon. The collections made were analysed with respect to: (a) distribution and abundance of the taxa present; (b) faunistic relationships among samples from the 5 sites; (c) seasonal changes in both of these factors. A total of 181 taxa were recognised, many of which are identified to species, and many of which are demersal or epi-benthic in habits. At all sites, the abundance of animals increases from May to November, and faunal similarity between sites also changes. In May, reef collections are generally similar to one another and, with the exception of the slope surface collection, distinct from the open water collection. In September this pattern is enhanced, but in November slope collections more closely resemble the open water collection, while the lagoon collections are quite distinct from slope and open water collections. Lagoon surface and substratum collections also differ considerably from each other at this time. A MULTCLAS cluster analysis of the samples confirms the pattern of change in faunal relationships seen from examination of the collections. Dark-trap samples were used to assess the bias introduced by using a light to attract the animals, as well as to estimate the density of the fauna sampled. Lighttrap samples over-represent calanoid and harpacticoid copepods and gammarid amphipods, but the bias is minor and does not prevent use of a light trap as an efficient sampling tool for near-reef plankton. The density of the fauna is approximately 700 animals m-3 at all sites. This may be a lower density than in more tropical regions. Pronounced seasonal changes occur in faunal composition of collections from open water and from surface sites. The substratum collections show more constant faunas throughout the year. Major changes are primarily in the proportions of copepods and cumaceans present. Changes in amphipod numbers are also important at lagoon sites.  相似文献   

15.
The demersal fish fauna of Albatross Bay, in the eastern Gulf of Carpentaria, northern Australia, was sampled on seven cruises from August 1986 to November 1988, using a random stratified trawl survey. Four depth zones between 7 and 45 m were sampled during both day and night. The mean biomass of fish from all seven cruises was 297 kg ha–1 for days trawls and 128 kg ha–1 for night trawls. The overall mean catch rates were 922 kg h–1 for day trawls and 412 kg h–1 for night trawls. There were marked differences between cruises in both the biomass and catch rate. Approx 890 000 fish of 237 species were collected. Of these, 25 species comprised 82% of the total biomass and 74% of the overall catch rate. The dominant families were Leiognathidae, Haemulidae and Clupeidae, with Sciaenidae and Dasyatidae important at night.Leiognathus bindus was the most abundant species. Twenty-five species occurred in more than 50% of trawls, withCaranx bucculentus the most frequently caught (96% of all trawls). Thirty four species were predators on prawns; their absolute mean biomass was 50 kg ha–1 during the day and 39 kg ha–1 at night. The corresponding catch rates were 171 and 125 kg h–1. Multiple-regression analyses were used to discriminate the effects of diel, seasonal, depth and cruise patterns. Of the 31 most abundant species, 15 showed diel patterns of abundance; 11 species showed seasonal patterns of abundance; 23 species had differential depth distribution; and 13 species showed significant cruise-to-cruise variation in abundance. Cruise variations in abundance were tested against salinity, temperature, tidal exchange, plankton biomass and prawn abundances as well as periods (and lags) of total rainfall prior to sampling. Only total rainfall showed any significant correlation. Total rainfall over a period of 6 wk immediately prior to sampling showed significant positive correlations with the abundances of five species, with overall daytime catch rates, and with the suite of 34 prawn predators. Rainfall and river runoff into Albatross Bay were significantly correlated. In Albatross Bay, the complex of factors affecting fish abundances and the magnitude of between-cruise differences indicate that such tropical communities may be unpredictable and are not seasonally constant. The high catch rates in Albatross Bay relative to similar tropical areas elsewhere are discussed and attributed to the light exploitation of the Albatross Bay stocks. Other than a prawn fishery, there is no commercial trawling in Albatross Bay. Hence, the only fishing mortality is a result of by-catch from prawn trawling. The annual total of such fish by-catch is probably less than 10% of the estimated standing stock of 93 000 tonnes.  相似文献   

16.
In situ diel feeding behavior of neritic copepods was investigated using the gut fluorescence method, during spring and fall bloom periods in Akkeshi Bay, on the eastern coast of Hokkaido, Japan. Acartia omorii and Paracalanus sp. were the dominant species during the fall, and Pseudocalanus spp. and A. longiremis during the spring. During both bloom periods, diel rhythms were always observed for the gut pigment contents of these dominant copepods, although there were interspecific differences in the pattern. The maximum gut pigment content was always observed during the night and the minimum during the day. For all species, except Paracalanus sp., the average gut pigment content during the night was significantly higher (p<0.05) than during daytime by factors of between 1.5 and 2.7. There were no significant differences between the gut evacuation rate constants determined during the day and the night, and initial gut pigment content had no effect on the value of gut evacuation rate constants. The instantaneous ingestion rates of individual copepods calculated from gut pigment and the mean value of gut evacuation rate constants followed the same diel rhythms as gut pigment contents. Copepod daily ingestion rates were higher than the daily requirements for respiration during both bloom periods. Estimated daily ration was 40 to 91% of body carbon during the fall bloom, and 17 to 28% during the spring bloom. The higher daily rations during fall were probably due to the difference in in situ temperature (ca. 14°C).  相似文献   

17.
Since the substantial loss of subtidal eelgrass (Zostera marina L.) in the 1930s, seagrass beds in the Wadden Sea are limited to the intertidal zone and dominated by Z. noltii Hornem. This study deals with the effect of vegetated tidal flats on quantities of mobile epifauna and proves empirically the function of seagrass canopies as a refuge for marine animals remaining in the intertidal zone at ebb tide. Drop-trap samples were taken in the Sylt-Rømø Bight, a shallow tidal basin in the northern Wadden Sea, on vegetated and unvegetated tidal flats during July and August 2002, and during the entire growth period of Z. noltii from May to September in 2003. The species composition in Z. noltii and bare sand flats showed minor differences since only two isopod species (Idotea baltica and I. chelipes) occurred on Z. noltii flats exclusively. Juvenile shore crabs (Carcinus maenas L.), brown shrimps (Crangon crangon L.) and common gobies (Pomatoschistus microps Krøyer) were also found abundantly on bare sand flats. However, the results showed significantly higher abundances and production of these dominant species on vegetated tidal flats. Additionally, the analyses of faunal size classes indicated higher percentages of small individuals in the seagrass bed during the entire sampling period. Despite drastic diurnal fluctuations of dissolved oxygen at low tide, faunal density in the residual water layer remaining in seagrass canopies at ebb tide was found to be consistently higher than that found in artificially created tide-pool units. Although species composition of mobile epifauna did not basically differ between vegetated and unvegetated tidal flats, Z. noltii beds are considered to contribute quantitatively to the function of tidal flats, as an extended juvenile habitat for some of the most important species of the Wadden Sea food web.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
The spatial, diel and tidal variability in the abundance of piscivorous fishes and their teleost prey, and the dietary composition of predatory fishes were investigated in beds of Heterozostera tasmanica within Port Phillip Bay, Australia, from September 1997 to February 1998. Predatory and prey fish assemblages were sampled from beds of H. tasmanica at three locations during each combination of diel (day and night) and tidal (high and low) cycles. Pelagic and benthic crustaceans represented >60% by abundance of the diets of all predatory fishes. Seven species, 54% of all predatory fishes, were piscivorous. These piscivores consumed individuals from seven families, 36.8% of the fish families being associated with seagrass. Western Australian salmon, Arripis truttacea (Arripidae) (n = 174) and yank flathead, Platycephalus speculator (Platycephalidae) (n = 46) were the most abundant piscivores. A. truttacea consumed larval/post-larval atherinids, gobiids and sillaginids. P. speculator consumed late-juvenile/adult atherinids, clinids and gobiids. While the abundances of piscivores varied between locations (P < 0.001) and diel periods (P = 0.028), the relative differences in piscivore abundance between sites and diel periods were not consistent between tides. The abundances of A. truttacea varied in a complex way amongst sites, diel period and tidal cycle, as shown by a three-way interaction between these factors (P = 0.026). Only during diurnal periods at St. Leonards was the abundance of A. truttacea significantly higher during high than low tides (P < 0.001). During the other diel periods at each site, the abundance of A. truttacea did not vary. P. speculator was significantly more abundant nocturnally (P = 0.017). The abundance of small (prey) fishes varied significantly amongst sites (P < 0.001). During the day, the abundance of small fishes did not vary between high and low tides (P = 0.185), but their nocturnal abundance was greater during low tide (P < 0.001). Atherinids (n = 1732) and sillaginids (n = 1623) were the most abundant families of small fishes. Atherinids were significantly more abundant nocturnally (P = 0.005) and during low tides (P = 0.029), and varied significantly amongst sites (P < 0.001). Sillaginids varied significantly only amongst sites (P < 0.001). Seagrass beds provide a foraging habitat for a diverse assemblage of predatory fishes, many of which are piscivorous. Anti-predator behaviour and amongst-location variability in abundances of piscivorous fishes may explain some of the diel and tidal, and broad-scale spatial patterns in small-fish abundances. Received: 23 July 1999 / Accepted: 18 January 2000  相似文献   

19.
Joint USA/USSR ichthyoplankton surveys off the coasts of Washington, Oregon and northern California during the years 1981 to 1985 sampled more than 120 stations each year, from 5 to 360 km offshore and between Latitude 40° and 48° N, providing information on ontogeny and diel migration of larvae of the Dungeness crab Cancer magister on a scale not studied previously. We developed a maximum likelihood method for estimating abundance and fraction in the neuston at each station from a neuston tow and an oblique bongo tow. Latestage megalopae migrate vertically on a diel basis, with the fraction in the neuston being (on average) 62% at night (19.00 to 08.00 hrs Pacific Standard Time, PST) and 8% during the day (08.00 to 19.00 hrs PST). The hourly pattern of this migration includes a peak in the early evening, possibly another in the early morning, and an intermediate level in the late afternoon. We detected no dependence of vertical migration on cloud cover or sea state. Early-stage megalopae were present in much lower fractions in the neuston, but weakly displayed the same diel pattern of migration. Zoeae appeared to be below the neuston at all times, except for 2 or 3 h in the evening. From an abrupt change in larval stage in samples from a north-south cruise, we concluded that the majority of the larvae metamorphose from zoeae to megalopae over a fairly short time span (2 to 4 wk) at a given latitude. In later cruises, 95% of the larvae were megalopae, indicating that metamorphosis over the study area either occurs at the same time or proceeds from south to north over a time span of less than a month in early spring.  相似文献   

20.
While the benthic infauna of the North Sea has been studied intensively over the past decades, few studies have focused on the larger mobile epifauna. Studies carried out to date have described the distribution of epifaunal communities over the whole of the North Sea, but variability within the identified communities, which occurs on a much smaller scale, has so far remained unstudied. This is the first study to describe seasonal and annual variability of an epifaunal assemblage in the German Bight area, where environmental conditions are highly variable. The benthic community was sampled with a 2 m beam trawl from 1998 to 2001. The echinoderms Ophiura albida and Asterias rubens and the crustacean Pagurus bernhardus were the dominant species caught throughout the study period. Overall the species composition of the catches was relatively consistent, while abundances of dominant species fluctuated considerably between sampling periods. Differences between sampling periods were not only influenced by the abundances of dominant species, but also by less dominant species such as Ophiura ophiura, Astropecten irregularis, Corystes cassivelaunus, Crangon crangon and Aphorrahis pespelicani. The abundances of these species varied annually and seasonally in the assemblage. Clear differences between summer and winter in the species composition, abundance and biomass were identified. Annual and seasonal changes were most likely linked to migratory movements of epifauna into and out of the area under investigation. Temporal changes in species composition and abundance correlated best with water temperatures, while the spatial distribution of the total biomass over the whole sampling period was correlated with sediment characteristics. Anthropogenic influences such as fishing activity and chronic large-scale eutrophication are thought to have influenced the community on a long-term basis, but have been considered unlikely causes for the short-term variability described by this study.Communicated by J.P. Thorpe, Port Erin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号