首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total mercury (Hg) and monomethylmercury (MMHg) were analysed in the gills, liver and muscle of four cartilaginous fish species (top predators), namely, the eagle ray (Myliobatis aquila), the bull ray (Pteromylaeus bovinus), the pelagic stingray (Dasyatis violacea) and the common stingray (Dasyatis pastinaca), collected in the Gulf of Trieste, one of the most Hg-polluted areas in the Mediterranean and worldwide due to past mining activity in Idrija (West Slovenia). The highest Hg and MMHg concentrations expressed on a dry weight (d.w.) basis were found in the muscle of the pelagic stingray (mean, 2.529 mg/kg; range, 1.179–4.398 mg/kg, d.w.), followed by the bull ray (mean, 1.582 mg/kg; range, 0.129–3.050 mg/kg d.w.) and the eagle ray (mean, 0.222 mg/kg; range, 0.070–0.467 mg/kg, d.w.). Only one specimen of the common stingray was analysed, with a mean value in the muscle of 1.596 mg/kg, d.w. Hg and MMHg contents in the bull ray were found to be positively correlated with species length and weight. The highest MMHg accumulation was found in muscle tissue. Hg and MMHg were also found in two embryos of a bull ray, indicating Hg transfer from the mother during pregnancy. The number of specimens and the size coverage of the bull rays allowed an assessment of Hg accumulation with age. It was shown that in bigger bull ray specimens, the high uptake of inorganic Hg in the liver and the slower MMHg increase in the muscle were most probably due to the demethylation of MMHg in the liver. The highest Hg and MMHg contents in all organs were found in the pelagic stingray, which first appeared in the northern Adriatic in 1999. High Hg and MMHg concentrations were also found in prey species such as the banded murex (Hexaplex trunculus), the principal prey of the eagle rays and bull rays, the anchovy (Engraulis encrasicholus) and the red bandfish (Cepola rubescens), which are preyed upon by the pelagic stingray, as well as in zooplankton and seawater. Based on previously published data, a tentative estimation of MMHg bioamagnification was established. The average increase in MMHg between seawater, including phytoplankton, and zooplankton in the Gulf was about 104, and MMHg in anchovy was about 50-fold higher than in zooplankton. The bioaccumulation of MMHg between seawater and small pelagic fish (anchovy) amounted to 106 and between water and the muscle of larger pelagic fish (pelagic stingray) to 107. The MMHg increase between surface sediment and benthic invertebrates (murex) and between benthic invertebrates and small benthic fish was 102. Ultimately, the trophic transfer resulted in a 103 accumulation of MMHg between water and muscle of larger benthic fish (bull ray, eagle ray, common stingray), suggesting lower bioaccumulation by benthic feeding species.  相似文献   

2.
We examined Hg biogeochemistry in Baihua Reservoir, a system affected by industrial wastewater containing mercury (Hg). As expected, we found high levels of total Hg (THg, 664-7421 ng g(-1)) and monomethylmercury (MMHg, 3-21 ng g(-1)) in the surface sediments (0-10 cm). In the water column, both THg and MMHg showed strong vertical variations with higher concentrations in the anoxic layer (>4m) than in the oxic layer (0-4 m), which was most pronounced for the dissolved MMHg (p < 0.001). However, mercury levels in biota samples (mostly cyprinid fish) were one order of magnitude lower than common regulatory values (i.e. 0.3-0.5 mg kg(-1)) for human consumption. We identified three main reasons to explain the low fish Hg bioaccumulation: disconnection of the aquatic food web from the high MMHg zone, simple food web structures, and biodilution effect at the base of the food chain in this eutrophic reservoir.  相似文献   

3.
Sediments from lakes near Rouyn-Noranda, Quebec, contain elevated concentrations of several metals, including Cd, Cu, Pb and Zn. Amphipods, fingernail clams, mayflies and tanytarsid midges were absent, and sediment toxicity was observed in chronic tests with Hyalella in sediments from Lac Dufault, the lake closest to Rouyn-Noranda. Bioaccumulation by Hyalella demonstrated elevated bioavailability of Cd, Co, Cr, Pb and Tl, but only Cd was accumulated to levels close to the toxic threshold. Copper, which is regulated by Hyalella, was not elevated in these amphipods, but it was elevated in overlying water in the toxicity tests. Toxic effects in Lac Dufault sediments are probably caused primarily by Cd, at least in amphipods, with a possible minor contribution from Cu. An integrated assessment, including sediment chemistry, benthic community composition, sediment toxicity, metal bioaccumulation in benthos, and comparison of bioaccumulation and/or overlying water concentrations with threshold effect concentrations, provides the best indication of effects and their cause.  相似文献   

4.
Mercury (Hg) can be strongly accumulated and biomagnified along aquatic food chain, but the exposure pathway remains little studied. In this study, we quantified the uptake and elimination of both inorganic mercury [as Hg(II)] and methylmercury (as MeHg) in an important farmed freshwater fish, the tilapia Oreochromis niloticus, using 203Hg radiotracer technique. The dissolved uptake rates of both mercury species increased linearly with Hg concentration (tested at ng/L levels), and the uptake rate constant of MeHg was 4 times higher than that of Hg(II). Dissolved uptake of mercury was highly dependent on the water pH and dissolved organic carbon concentration. The dietborne assimilation efficiency of MeHg was 3.7-7.2 times higher than that of Hg(II), while the efflux rate constant of MeHg was 7.1 times lower. The biokinetic modeling results showed that MeHg was the greater contributor to the overall mercury bioaccumulation and dietary exposure was the predominant pathway.  相似文献   

5.
The utility of stable isotope tracers for investigating the relationship between cadmium (Cd) partitioning in artificial sediment-water systems and Cd accumulation in a benthic detritivore (Asellus racovitzai, Isopoda) was explored. In the laboratory, Cd isotopes were applied to synthetic sediment and isotope concentrations were measured in sediment, overlying water and exposed asellids over a 10-day period. Isotope ratios measured in sediment and water were compared to ratios measured in asellids to determine whether Cd partitioning could predict metal bioaccumulation. Two different parameters which might affect Cd partitioning between the sediment and overlying water compartments were investigated: the chemical form in which Cd was added to systems, and the organic matter content of the sediment. To test the effect of chemical form on Cd partitioning, three isotopes of cadmium were individually applied to formulated sediment in varying combinations of 113Cd(NO3)2, 112Cd-humic acid (HA) 114CdSO4. The results demonstrated that chemical form did not influence partitioning, as the Cd isotope that was applied to sediment in the nitrate form exhibited similar partitioning between sediment and overlying water as the isotope that was applied in the sulfate or HA form. However, Cd isotope concentrations in overlying water were strongly related to the pattern of isotope accumulation in asellids suggesting that overlying water concentrations determined Cd bioaccumulation. In contrast, when the organic matter content of sediment was increased through the addition of Sphagnum peat moss, total Cd concentrations in overlying water and tissue were low, and there was no relationship between Cd-isotope concentrations in tissue and water. These results indicate that Cd accumulation occurred primarily from water, and factors that increase metal partitioning to sediment, such as increased sediment organic matter content, decrease Cd accumulation in asellids. The stable isotope tracer method described herein appears to be a useful technique for investigating the relationship between metal partitioning and bioaccumulation in simple sediment systems, but could also be extended to more complex systems, and used with different metals that have multiple stable isotopes.  相似文献   

6.
Methylation of mercury (Hg) to highly toxic methyl Hg (MeHg), a process known to occur when organic matter (OM) decomposition leads to anoxia, is considered a worldwide threat to aquatic ecosystems and human health. We measured temporal and spatial variations in sediment MeHg, total Hg (THg), and major elements in a freshwater lagoon in Sweden polluted with Hg-laden cellulose fibers. Fiber decomposition, confined to a narrow surface layer, resulted in loss of carbon (C), uptake of nitrogen (N), phosphorus (P), and sulfur (S), and increased MeHg levels. Notably, fiber decomposition and subsequent erosion of fiber residues will cause buried contaminants to gradually come closer to the sediment–water interface. At an adjacent site where decomposed fiber accumulated, there was a gain in C and a loss of S when MeHg increased. As evidenced by correlation patterns and vertical chemical profiles, reduced S may have fueled C-fixation and Hg methylation at this site.  相似文献   

7.
The Baltic Sea is a species-poor, semi-enclosed, brackish sea, whose sediments contain a wide range of contaminants, including sediment-associated metals and radionuclides. In this study, we have examined and compared bioaccumulation kinetics and assimilation efficiencies of sediment-associated (51)Cr, (63)Ni and (14)C in three key benthic invertebrates (the deposit-feeding Monoporeia affinis, the facultative deposit-feeding Macoma baltica, and the omnivorous Halicryptus spinulosus). Our results demonstrate that (i) all radionuclides were accumulated, (ii) the different radionuclides were accumulated to various extents, (iii) small changes in organic carbon concentration can influence the accumulation, and (iv) the degree of accumulation differed only slightly between species. These processes, together with sediment resuspension and bioturbation, may remobilise trace metals from the sediment to the water and to higher trophic levels, and therefore should be taken into account in exposure models and ERAs.  相似文献   

8.
This paper presents the results of investigations on the suitability of lugworms (Arenicola marina) to study the bioaccumulation potential of Hg, PCB and PAH compounds from dredged sediments upon laboratory exposure. The results of tissue concentrations for several sediments from Spanish ports showed that it is possible to identify increased levels of contaminants in lugworms just after 10 days of exposure although different bioaccumulation trends were shown amongst compounds and sediments. Total and organic Hg compounds were accumulated following a non-linear trend, with a sharp increase of tissue concentrations in lugworms exposed to levels of contamination associated to a significant increase in mortality. Interestingly organic Hg compounds accounted for an average of 40% of the total Hg in lugworms exposed to sediments presenting sublethal concentrations while, when exposed to sediments presenting lethal concentrations, organic Hg compounds only accounted for 4% of the total Hg accumulated in lugworms. While lugworms seem to readily accumulate Hg and PCB compounds, with some variability explained by the organic matter content in sediments or other factor for which it accounts for, the results for PAHs suggest a more complex process of bioaccumulation as no relationship was observed between the measured concentrations in sediments and in lugworms, not even after correcting the results for this factor. Besides, the differences in the calculated BSAFs for each compound and for each sediment supported the use of bioassays for evaluating the bioaccumulation potential of sediment-bound contaminants as part of the assessment framework required in pre-dredging investigations, as they still offer unique information about the bioavailability of sediment-bound contaminants.  相似文献   

9.
In urban area, the accumulation of polluted stormwater sediments (SWS) in retention ponds may be a source of dissolved pollutants and nutrients for the aquatic ecosystems. Our objective was to quantify the influence of the thickness of SWS layer and the occurrence of tubificid worms on organic matter processing (O(2) uptake and fluxes of NH(4)(+), NO(3)(-), PO(4)(3-), and dissolved organic carbon between sediment and water), releases of 17 PAHs and 4 heavy metals, and microbial characteristics. Results showed that oxidation of SWS organic matter (O(2) and NO(3)(-) uptakes) and releases of nutrients were significantly increased by the quantity of accumulated SWS and the worm bioturbation. Releases of acenaphtene and naphthalene from sediments were significantly increased by the thickness of the SWS layer. In contrast, tubificid worms did not promote the mobilization of pollutants. In conclusion, biological activities and stormwater sediment characteristics need to be assessed to quantify the fate of pollutants and nutrients in stormwater retention ponds.  相似文献   

10.
Surface sediments (0-2cm) were collected at 40 sites along the Tagus Estuary in July and December 2004. The sediments were analysed for total mercury, monomethylmercury (MMHg) and interpretative parameters (e.g. redox potential, pH, C(org)). No significant differences in total Hg, pH, Al, Fe, Mn and C(org) were found between sediments collected in the two periods, but MMHg concentrations were higher in July. On average sediments were warmer and more reducing in summer. On the basis of these results, an increase of 7kg of MMHg (+37%) in surface sediments of the Tagus Estuary was estimated. Presumably higher temperatures in summer promote the increase of microbial activity and higher methylation rates. The alterations observed in this study point to the potential importance of seasonal changes in MMHg production at surface sediments with eventual changes in the MMHg uptake by benthic invertebrates and other organisms in the food web.  相似文献   

11.
The present study evaluates the relationship between Acid Volatile Sulfides (AVS) and metal accumulation in invertebrates with different feeding behavior and ecological preferences. Natural sediments, pore water and surface water, together with benthic and epibenthic invertebrates were sampled at 28 Flemish lowland rivers. Different metals as well as metal binding sediment characteristics including AVS were measured and multiple regression was used to study their relationship with accumulated metals in the invertebrates taxa.Bioaccumulation in the benthic taxa was primarily influenced by total metal concentrations in the sediment. Regarding the epibenthic taxa metal accumulation was mostly explained by the more bioavailable metal fractions in both the sediment and the water. AVS concentrations were generally better correlated with metal accumulation in the epibenthic invertebrates, rather than with the benthic taxa. Our results indicated that the relation between AVS and metal accumulation in aquatic invertebrates is highly dependent on feeding behavior and ecology.  相似文献   

12.
A steady state model is developed to describe the bioaccumulation of organic contaminants by 14 species in a Baltic food web including pelagic and benthic aquatic organisms. The model is used to study the bioaccumulation of five PCB congeners of different chlorination levels. The model predictions are evaluated against monitoring data for five of the species in the food web. Predicted concentrations are on average within a factor of two of measured concentrations. The model shows that all PCB congeners were biomagnified in the food web, which is consistent with observations. Sensitivity analysis reveals that the single most sensitive parameter is log K(OW). The most sensitive environmental parameter is the annual average temperature. Although not identified amongst the most sensitive input parameters, the dissolved concentration in water is believed to be important because of the uncertainty in its determination. The most sensitive organism-specific input parameters are the fractional respiration of species from the water column and sediment pore water, which are also difficult to determine. Parameters such as feeding rate, growth rate and lipid content of organism are only important at higher trophic levels.  相似文献   

13.
A stable isotope tracer technique was used to evaluate the relative importance of particulates and water as respective sources of cadmium (Cd) uptake in the freshwater isopod Asellus racovitzai (Isopoda, Crustacea). 113Cd(NO3)2 was applied to the sediment at a nominal concentration of 20.0 ng g-1, and 114Cd(NO3)2 was added to the overlying water (nominal concentration of 4.4 ng g-1), in the same test systems. Asellids added were either free-ranging on the sediment surface, where they were exposed to both particulate and water sources of Cd, or were enclosed in dialysis 'tubes', 10 cm above the sediment surface, and were therefore exposed to Cd in water only. By analysis of both isotopes, uptake vectors could be determined simultaneously. After 7 days of exposure, average 114Cd concentrations in 'free' asellids were 15.6 +/- 2.0 micrograms/g, compared with 10.4 +/- 1.8 micrograms/g in 'tube'-held asellids (P < 0.05), i.e. at least 60% of accumulated 114Cd was from water. Furthermore, water-spiked 114Cd was accumulated in asellids to tissue concentrations that were more than four-times greater than sediment-spiked 113Cd. When the sediment organic content was increased (20% peat moss), total Cd concentrations in both overlying water and asellids were significantly lower (P < 0.01), compared with the mineral sediment treatments, and Cd accumulation in tube and free asellids was similar. This study shows that water is an important vector of Cd accumulation in A. racovitzai, and factors that lower Cd concentrations in solution (such as increased organic content of sediment), decrease Cd bioaccumulation.  相似文献   

14.
Cadmium, lead, zinc, Chromium, copper, nickel and manganese in sediments and in aquatic organisms were collected from the aquaculture pond ecosystem of the Pearl River Delta (PRD), China and analyzed to evaluate bioaccumulation and trophic transfer in food chains, as well as the potential health risk of exposure to the Hong Kong residents via dietary intake of these aquatic products. The results revealed that based on the biota–sediment accumulation factor, omnivorous fish and zooplankton accumulated more trace metals from sediment than carnivorous fish. Concentrations of seven trace metals in aquaculture pond of PRD significantly decreased with increasing trophic levels, showing that these trace metals were trophically diluted in predatory and omnivorous food chains. The hazard index values of all fish species were smaller than 1 for adults and children, indicating there was no health risk from the multiple metals via ingestion of the freshwater fish for the inhabitants.  相似文献   

15.
Concentrations and accumulation profiles of PCDDs/DFs and coplanar-PCBs (co-PCBs) in aquatic biota (e.g., plankton, shellfish, benthic invertebrate, and fish) and sediment from Tokyo Bay were examined to elucidate the relationship between bioaccumulation and trophic level in the food web as determined by the stable nitrogen isotope analysis. Bioaccumulation patterns of PCDDs/DFs and co-PCBs varied greatly among congeners. Accumulation patterns of PCDDs/DFs and co-PCBs are not solely explained by their physicochemical properties. Biota-sediment accumulation factors (BSAFs) for co-PCBs in biota from Tokyo Bay were significantly greater than those of PCDDs/DFs. Furthermore, the slopes of the plots of delta15N and BSAF values and water solubility of 2,3,7,8-substituted PCDDs/DFs and co-PCBs were highly correlated. The results of our study would provide the valuable information to understand the accumulation properties of PCDDs/DFs and co-PCBs that can be used as a scientific basis to determine the sediment quality criteria of PCDDs/DFs and co-PCBs.  相似文献   

16.
Traditionally, regulatory approaches to the bioaccumulation of hydrophobic organic chemicals (HOCs) have emphasized the direct accumulation of these chemicals from solution across biological membranes, leading to the development of the bioconcentration factor as a measure of direct uptake of freely dissolved HOCs. However, an often larger fraction of the total amount of many HOCs in the water column is not freely dissolved, but is partitioned among suspended sediments and particulate matter in the water column. Partitioned HOCs are available for accumulation by organisms ingesting the contaminated particulate matter. The net accumulation of HOCs from water through consumption and direct uptake of dissolved HOC is termed bioaccumulation, quantified using a bioaccumulation factor. In order to develop recommendations designed to close the gap between current knowledge concerning bioaccumulation and regulations, the Institute of Evaluating Health Risks organized a working conference, 'The Bioaccumulation of Hydrophobic Organic Chemicals by Aquatic Organisms'. This paper reflects the view of workshop participants that the bioaccumulation paradigm can be used in a number of practical applications.  相似文献   

17.
Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved (75)Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of (75)Se over the range 80-180 mg SO(4) liter(-1). When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.  相似文献   

18.
Sediments in aquatic ecosystems are often contaminated as a result of anthropogenic activities. Sediments and benthic organisms have been used to monitor trace metals contamination. However, due to the high variability of contaminant bioavailability, the attempt to link metal concentration in sediments and contamination of the organisms or ecotoxicological effect often lead to disappointing results. The technique of diffusive gradients in thin films (DGT) has been proposed as a relevant tool to study metal bioavailability, for example for accumulation in plants. In the present study, laboratory microcosm experiments were conducted with six contaminated sediments to compare metal accumulation in DGT and bioaccumulation in a chironomid (Chironomus riparius) for Cu, Cd and Pb . Metal accumulation in DGT was measured over time then modelled to determine two parameters of the dynamic response of the metals to DGT deployment: the size of the particulate labile pool and the kinetic of the solid-dissolved phase exchange. The mobility of metals was found metal and sediment dependent. A significant relationship between metal accumulated in DGT and bioaccumulated in chironomids was found for Cu and Pb. However, total metals in sediments were the best predictors of bioaccumulation. Nevertheless, the knowledge of the metals dynamic enhanced our ability to explain the different biological uptake observed in sediments of similar total metal concentrations.  相似文献   

19.
The amphipod Hyalella azteca was exposed for 28 d to different combinations of Zn contaminated sediment and food. Sediment exposure (+clean food) resulted in increased Zn body burdens, increased mortality and decreased body mass when the molar concentrations of simultaneously extracted Zn were greater than the molar concentration of Acid Volatile Sulfide (SEMZn-AVS > 0), suggesting that dissolved Zn was a dominant route of exposure. No adverse effect was noted in the foodexposure (+clean sediment), suggesting selective feeding or regulation. Combined exposure (sediment + food) significantly increased adverse effects in comparison with sediment exposure, indicating contribution of dietary Zn to toxicity and bioaccumulation. The observed enhanced toxicity also supports the assumption on the presence of an avoidance/selective feeding reaction of the amphipods in the single sediment or food exposures. During 14 d post-exposure in clean medium, the organisms from the same combined exposure history received two feeding regimes, i.e. clean food and Zn spiked food. Elevated Zn bioaccumulation and reduced reproduction were noted in amphipods that were offered Zn spiked food compared to the respective organisms that were fed clean food. This was explained by the failure of avoidance/selective feeding behavior in the absence of an alternative food source (sediment), forcing the amphipods to take up Zn while feeding. Increasing Zn body burdens rejected the assumption that Zn uptake from food was regulated by H. azteca. Our results show that the selective feeding behavior should be accounted for when assessing ecological effects of Zn or other contaminants, especially when contaminated food is a potential exposure route.  相似文献   

20.
Hydrophobic chemicals are known to associate with sediment particles including those from both suspended particulate matter and bottom deposits. The complex and variable composition of natural particles makes it very difficult therefore, to predict the bioavailability of sediment-bound contaminants. To overcome these problems we have previously devised a test system using artificial particles, with or without humic acids, for use as an experimental model of natural sediments. In the present work we have applied this experimental technique to investigate the bioavailability and bioaccumulation of pyrene by the freshwater fingernail clam Sphaerium corneum. The uptake and accumulation of pyrene in clams exposed to the chemical in the presence of a sample of natural sediment was also investigated. According to the results obtained, particle surface properties and organic matter content are the key factors for assessing the bioavailability and bioaccumulation of pyrene by clams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号