共查询到20条相似文献,搜索用时 15 毫秒
1.
Allen S. Lefohn Victor C. Runeckles Sagar V. Krupa Douglas S. Shadwick 《Journal of the Air & Waste Management Association (1995)》2013,63(8):1039-1045
Air quality standards are established to prevent or minimize the risk of adverse effects from air pollution to human health, vegetation, and materials. In order to develop standards which provide an adequate measure of protection to vegetation, it is necessary to define, in as precise terms as possible, the relationship between ambient air quality and the potential for adverse effects on vegetation. Based on recent evidence published in the literature, as well as retrospective studies using data from the National Crop Loss Assessment Network (NCLAN), cumulative indices can be used to describe exposures of ozone for predicting agricultural crop effects. However, the mathematical form of the standard that may be proposed to protect crops does not necessarily have to be of the same form as that used in the statistical or process oriented mathematical models that relate ambient ozone exposures with vegetation effects. This paper discusses the limitations associated with applying a simple statistic that may take the place of a more biologically meaningful exposure parameter. While the NCLAN data have been helpful in identifying indices that may be appropriate for establishing exposure-response relationships, the limitations associated with the NCLAN protocol need to be considered when attempting to apply these relationships in the establishment of a secondary national ambient air quality standard. The Weibull model derived from NCLAN experiments must demonstrate its generality and universal applicability. Furthermore, its predictive power must be tested using independent sets of field data. 相似文献
2.
3.
H. E. Heggestad 《Journal of the Air & Waste Management Association (1995)》2013,63(6):424-426
Present evidence suggests that ozone is the most damaging of all air pollutants affecting vegetation. It is the principal oxidant in the photochemical smog complex. Concentrations of ozone have exceeded 0.5 part per million (ppm) in the Los Angeles area. One-tenth of this level for 8 hours is known to injure very sensitive tobacco varieties. Many plant species are visibly affected after a few hours exposure at concentrations much lower than 0.5 ppm. There is also some evidence that ozone reduces plant growth. Many factors must be taken into account when considering standards to protect vegetation from ozone damage. These include ozone concentration and methods of measurement, time of exposure, possible additive effects of other pollutants, sensitivity of plant species, their economic value, and the extent of injury which can be tolerated. The response of a species to the pollutant is conditioned by genetic factors and environmental conditions. Lack of specific routine methods for measuring ozone in ambient air is a handicap. California and Colorado established standards for oxidants at 0.15 and 0.10 ppm, respectively, for 1 hour. How these standards relate to the ozone dosage causing acute and chronic injury to various plant species is discussed. 相似文献
4.
Timothy H. Bertram Ronald C. Cohen William J. Thorn III 《Journal of the Air & Waste Management Association (1995)》2013,63(10):1473-1479
Abstract The absolute accuracy and long‐term precision of atmospheric measurements hinge on the quality of the instrumentation and calibration standards. To assess the consistency of the ozone (O3) and nitrogen oxides (NOx) standards maintained at the National Institute of Standards and Technology (NIST), these standards were compared through the gas‐phase titration of O3 with nitric oxide (NO). NO and O3 were monitored using chemiluminescence and UV absorption, respectively. Nitrogen dioxide (NO2) was monitored directly by laser‐induced fluorescence and indirectly by catalytic conversion to NO, followed by chemiluminescence. The observed equivalent loss of both NO and O3 and the formation of NO2 in these experiments was within 1% on average over the range of 40–200 nmol mol?1 of NO in excess O3, indicating that these instruments, when calibrated with the NIST O3 and NO standards and the NO2 permeation calibration system, are consistent to within 1% at tropospherically relevant mixing ratios of O3. Experiments conducted at higher initial NO mixing ratios or in excess NO are not in as good agreement. The largest discrepancies are associated with the chemiluminescence measurements. These results indicate the presence of systematic biases under these specific conditions. Prospects for improving these experiments are discussed. 相似文献
5.
A. F. W. Cole Morris Katz 《Journal of the Air & Waste Management Association (1995)》2013,63(4):201-206
In the summers of 1960 and 1961, groups from the Canada Department of Agriculture, the Meteorological Service of Canada, and the Canada Department of National Health and Welfare conducted a joint study in a tobacco-growing area along the north shore of Lake Erie. The purpose of the study was to determine the causal agent for weather fleck damage to tobacco crops. A number of air pollutants were monitored and the results correlated with extensive observations of meteorological phenomena and effects on rate of growth and fleck damage to leaves of tobacco plants in experimental plots. Ozone concentrations followed a diurnal cycle, rising a few hours after sunrise, peaking in early afternoon at about 5 pphm, and dropping to a minimum of less than 1 pphm during the night. Other measurements indicated the presence of NO2 in the order of 1 pphm, aldehydes about 0.2 pphm or lower, and negligible concentrations of SO2. Cracking of stretched rubber strips followed the ozone values although, in general, the cracking index was greater than could be attributed to ozone (by oxidized KI) alone. The maximum ozone value recorded during the two growing seasons was IS pphm. A dosage of 20 pphm-hr was found sufficient to cause weather fleck or ozone damage to susceptible tobacco leaves. In addition meteorological data could be used to predict weather fleck attacks one to four days in advance. 相似文献
6.
Annette C. Rohr 《Journal of the Air & Waste Management Association (1995)》2018,68(4):288-307
A wealth of literature exists regarding the pulmonary effects of ozone, a photochemical pollutant produced by the reaction of nitrogen oxide and volatile organic precursors in the presence of sunlight. This paper focuses on epidemiological panel studies and human clinical studies of ozone exposure, and discusses issues specific to this pollutant that may influence study design and interpretation as well as other, broader considerations relevant to ozone-health research. The issues are discussed using examples drawn from the wider literature. The recent panel and clinical literature is also reviewed. Health outcomes considered include lung function, symptoms, and pulmonary inflammation. Issues discussed include adversity, reversibility, adaptation, variability in ozone exposure metric used and health outcomes evaluated, co-pollutants in panel studies, influence of temperature in panel studies, and multiple comparisons. Improvements in and standardization of panel study approaches are recommended to facilitate comparisons between studies as well as meta-analyses. Additional clinical studies at or near the current National Ambient Air Quality Standard (NAAQS) of 70 ppb are recommended, as are clinical studies in sensitive subpopulations such as asthmatics.
Implications: The pulmonary health impacts of ozone exposure have been well documented using both epidemiological and chamber study designs. However, there are a number of specific methodological and related issues that should be considered when interpreting the results of these studies and planning additional research, including the standardization of exposure and health metrics to facilitate comparisons among studies. 相似文献
7.
John F. Bedi Steven M. Horvath Deborah M. Drechsler-Parks 《Journal of the Air & Waste Management Association (1995)》2013,63(8):1016-1019
To test the reproducibility of the pulmonary function response to ozone exposure in older individuals, eight men and eight women, average age 62.8 years, participated in three 2-hour exposures to 0.45 ppm ozone at 23.3 C and 62.5 percent relative humidity. The first and second exposures were separated by an average time of 17.2 days, and 27.3 days separated the second and third exposures. Subjects alternated riding a bicycle ergometer for 20 minutes at an average minute ventilation of 26 liters BTPS (body temperature pressure, saturated), with 20-minute rest periods. Forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV-1), and forced expiratory flow between 25 and 75% of FVC (FEF 25- 75%) were measured pre and post exposure. The reproducibility of individual pre-post changes were assessed by calculation of the best linear fit and correlation coefficients between exposures. For FVC and FEV-1, the slopes were significantly different from 1, and correlation coefficients not significantly different from zero, implying that older individuals may not respond consistently to similar ozone exposures. 相似文献
8.
J.S. Evans K.M. Thompson D. Hattis 《Journal of the Air & Waste Management Association (1995)》2013,63(9):1700-1703
ABSTRACT Standard approaches for computing population exposures due to specific sources of air pollutants are relatively complex. In many cases, more simple and approximate methods would be useful. This paper develops an approach, based on the concept of exposure efficiency, that may be used for estimating the impact of a source (or source class) on the integrated population exposure. The approach is illustrated by an example, which uses the concept of exposure efficiency to examine the impact of perchloroeth-ylene emissions from dry cleaners in the United States. The paper explores the geographic variability of exposure efficiency by evaluating it for each of 100 randomly selected dry cleaners. For perchloroethylene, which has a long atmospheric residence time, the site-to-site variability in exposure efficiency is found to be relatively small. This suggests that simple exposure assessments, based on generic distributional characterizations of exposure efficiency, may be used in risk assessments without introducing appreciable uncertainty. For many compounds, like perchloroethylene, the uncertainty inherent in the estimation of cancer potency or source emissions would dominate these small errors. 相似文献
9.
Joseph J. Helble Matthew S. DeVito Chang-Yu Wu Francis L. Smith D. Marrack 《Journal of the Air & Waste Management Association (1995)》2013,63(9):1619-1622
ABSTRACT Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 μm (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-tem-perature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated that susceptible individuals are being harmed by ambient PM. Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution. Time- and size-resolved PM measurements are needed for testing mechanistic toxicological hypotheses, for characterizing the relationship between combustion operating conditions and transient emissions, and for source apportionment studies to develop air quality plans. Citations are provided to more specialized reviews, and the concluding comments make suggestions for further research. 相似文献
10.
Ralph I. Larsen William F. McDonnell Donald H. Horstman Lawrence J. Folinsbee 《Journal of the Air & Waste Management Association (1995)》2013,63(4):455-459
Forced expiratory volume in 1 second (FEV1) was measured in 21 men exercising while exposed to four O3 concentrations (0.0,0.08,0.10, and 0.12 ppm). A lognormal multiple linear regression model was fitted to their mean FEV1 measurements to predict FEV1 percent decrease as a function of O3 concentration and exposure duration. The exercise level used was probably comparable to heavy manual labor. The longest O3, exposure studied was 6 h. Extrapolating cautiously to an 8-h workday of heavy manual labor, the model predicts that O3 concentrations of 0.08, 0.10, and 0.12 ppm would decrease FEV1 by 9,15, and 20 percent, respectively. 相似文献
11.
12.
Wayne R. Ott 《Journal of the Air & Waste Management Association (1995)》2013,63(7):966-975
Historically, environmental regulatory programs designed to protect public health have monitored pollutants only in geophysical carrier media (for example, outdoor air, streams, soil). Field studies have identified a gap between the levels observed in geophysical carrier media and the concentrations with which people actually come into contact: their daily exposures. A new approach—Total Human Exposure (THE)—has evolved to fill this gap and provide the critical data needed for accurately assessing public health risk. The THE approach considers a three-dimensional "bubble" around each person and measures the concentrations of all pollutants contacting that bubble, either through the air, food, water, or skin. Two basic THE approaches have emerged: (1) the direct approach using probability samples of populations and measuring pollutant concentrations in the food eaten, air breathed, water drunk, and skin contacted; and (2) the indirect approach using human activity pattern-exposure models to predict population exposure distributions. Using the direct approach, EPA has conducted over 20 field studies for pollutants representing four groups—volatile organic compounds, carbon monoxide, pesticides, and particles—in 15 cities in 12 states. The indirect modeling approach has been applied to several of these pollutants. Additional research is needed in a great variety of areas. Even from the few projects completed thus far, the THE approach has yielded a rich new data base for risk assessments and has provided many surprises about the relative contribution of various pollutant sources to public health risk. 相似文献
13.
14.
15.
16.
Ralph I. Larsen Walter W. Heck 《Journal of the Air & Waste Management Association (1995)》2013,63(4):325-333
Acute leaf injury data are analyzed for 19 plant species exposed to ozone or sulfur dioxide. The data can be depicted by a new leaf injury mathematical model with two characteristics: (1) a constant percentage of leaf surface is injured by an air pollutant concentration that is inversely proportional to exposure duration raised to an exponent; (2) for a given exposure duration, the percent leaf injury as a function of pollutant concentration tends to fit a lognormal frequency distribution. Leaf injury as a function of laboratory exposure duration is modeled and compared with ambient air pollutant concentration measurements for various averaging times to determine which exposure durations are probably most important for setting ambient air quality standards to prevent or reduce visible leaf injury. The 8 hour average appears to be most important for most of the plants investigated for most sites, 1 hr concentrations are important for most plants at a few sites, and 3 hr S02 concentrations are important for some plants, especially those exposed to isolated point sources of the pollutant. The 1, 3, and 8 hr threshold injury concentrations are listed for each of the 19 plant species studied. To prevent or reduce acute leaf injury, fixed, nonoverlapping ambient air quality measurements and standards are recommended for averaging times of 1, 3, and 8hr. 相似文献
17.
This study aimed to evaluate serum polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) levels in electric-arc-furnace workers according to their corresponding occupational exposure. In addition, the ambient PCDD/Fs of the work environment were measured to provide additional support for the exposure and accumulation inside the electric arc furnace. The ambient PCDD/F concentrations inside the electric arc furnace were 1.557-1.917 pg-TEQ/Nm(3), 5-24 folds higher than those outside (0.080-0.385 pg-TEQ/N m(3)). In addition, higher average serum levels were measured in the workers with high occupational dioxin exposure (24.0 pg WHO-TEQ/g lipid) than in those with lower occupational dioxin exposure (13.8 pg WHO-TEQ/g lipid). Higher PCDFs/PCDDs ratios were found in serum samples from high-exposure groups than in low-exposure groups. The higher ratio of PCDFs/PCDDs was also found in ambient samples consistent with other metallurgical processes reported previously. Our results suggest that PCDD/Fs exposure exits in the smelting process of electric arc furnace, and the occupational hygiene should be taken more seriously concern in that workplace. 相似文献
18.
Ralph I. Larsen Thomas C. Curran William F. Hunt Jr. 《Journal of the Air & Waste Management Association (1995)》2013,63(6):662-669
The new ozone National Ambient Air Quality Standard specifies that the expected number of days per calendar year that the 1 hour average ozone concentration can exceed 0.12 ppm must be equal to or less than 1. This paper describes a method to calculate design frequency, design concentration, and the percentage concentration reduction necessary to achieve this standard. The design frequency is once per year (1/365) if daily maximum hour ozone concentrations are available at a particular site for an equal number of days in summer (April through September) and winter (October through March). An equation is used to adjust design frequency as a function of the number of summer and winter samples available. The design concentration (the ambient concentration measured at the design frequency) needs to be reduced to 0.12 ppm. Graphical and digital methods for determining the design concentration are presented. Percentage concentration reductions needed to achieve the standard are calculated for each site which has ozone concentration data available in the National Aerometric Data Bank for at least half of the days in one summer of years 1975 through 1977. The degree of reduction calculated for the site with the highest concentrations in each county is indicated by shading on a map of the United States. 相似文献
19.
Exposure efficiency: concept and application to perchloroethylene exposure from dry cleaners 总被引:1,自引:0,他引:1
Evans JS Thompson KM Hattis D 《Journal of the Air & Waste Management Association (1995)》2000,50(9):1700-1703
Standard approaches for computing population exposures due to specific sources of air pollutants are relatively complex. In many cases, more simple and approximate methods would be useful. This paper develops an approach, based on the concept of exposure efficiency, that may be used for estimating the impact of a source (or source class) on the integrated population exposure. The approach is illustrated by an example, which uses the concept of exposure efficiency to examine the impact of perchloroethylene emissions from dry cleaners in the United States. The paper explores the geographic variability of exposure efficiency by evaluating it for each of 100 randomly selected dry cleaners. For perchloroethylene, which has a long atmospheric residence time, the site-to-site variability in exposure efficiency is found to be relatively small. This suggests that simple exposure assessments, based on generic distributional characterizations of exposure efficiency, may be used in risk assessments without introducing appreciable uncertainty. For many compounds, like perchloroethylene, the uncertainty inherent in the estimation of cancer potency or source emissions would dominate these small errors. 相似文献
20.
Alberto Mendoza-Dominguez Armistead G. Russell 《Journal of the Air & Waste Management Association (1995)》2013,63(11):1538-1550
ABSTRACT Three-dimensional air quality models (AQMs) represent the most powerful tool to follow the dynamics of air pollutants at urban and regional scales. Current AQMs can account for the complex interactions between gas-phase chemistry, aerosol growth, cloud and scavenging processes, and transport. However, errors in model applications still exist due in part to limitations in the models themselves and in part to uncertainties in model inputs. Four-dimensional data assimilation (FDDA) can be used as a top-down tool to validate several of the model inputs, including emissions inventories, based on ambient measurements. Previously, this FDDA technique was used to estimate adjustments in the strength and composition of emissions of gas-phase primary species and O3 precursors. In this paper, we present an extension to the FDDA technique to incorporate the analysis of particulate matter (PM) and its precursors. The FDDA approach consists of an iterative optimization procedure in which an AQM is coupled to an inverse model, and adjusting the emissions minimizes the difference between ambient measurements 相似文献