首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
ABSTRACT

Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 °C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.  相似文献   

2.
Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 degrees C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.  相似文献   

3.

In this study, a one-part alkali-activated slag (AAS) composed of ground-granulated blast furnace slag, desulfurized gypsum, and hydrated lime is proposed as alternative to cement for the production of cemented fine tailings backfill (CFTB), which is an environmentally friendly binder consisting of 93.72 wt.% industrial solid waste. Results show that AAS with 67.83 wt.% slag, 25.92 wt.% desulfurized gypsum, and 6.25 wt.% hydrated lime yields the highest strength, which is 1.7–3.2 times that of ordinary Portland cement (OPC). Aside from calcium silicate hydrate gel, appreciable quantity of ettringite characterized by interlocking needles structure and high bound water is also produced during the AAS hydration process. In addition, the hydration heat of the AAS binder is 48% less than that of OPC. Moreover, CFTB made of AAS provides better workability than that of CFTB with OPC up to 20 h. The findings of this study will contribute to the production of more cost-effective, durable, and environmental-friendly cemented fine tailings backfill.

  相似文献   

4.
EPA’s efforts to develop low cost, retrofitable flue gas cleaning technology include the development of highly reactive sorbents. Recent work addressing lime enhancement and testing at the bench-scale followed by evaluation of the more promising sorbents in a pilot plant are discussed here.

The conversion of Ca(OH)2 with SO2 increased several-fold compared with Ca(OH)2 alone when Ca(OH)2 was slurrled with fly ash first and later exposed to SO2 in a laboratory packed bed reactor. Ca(OH)2 enhancement increased with the increased fly ash amount. Dlatomaceous earths were very effective reactivity promoters of lime-based sorbents. Differential scanning calorimetry of the promoted sorbents revealed the formation of a new phase (calcium silicate hydrates) after hydration, which may be the basis for the observed Improved SO2 capture.

Fly ash/lime and diatomaceous earth/lime sorbents were tested in a 100 m3/h pilot facility incorporating a gas humidifier, a sorbent duct injection system, and a baghouse. The inlet SO2 concentration range was 1000-2500 ppm. With once-through dry sorbent injection into the humidified flue gas [approach to saturation 10–20°C (18–36°F) in the baghouse], the total SO2 removal ranged from 50 to 90 percent for a stoichiometric ratio of 1 to 2. Recycling the collected solids resulted in a total lime utilization exceeding 80–90 percent. Increased lime utilization was also investigated by the use of additives.  相似文献   

5.
Abstract

This article is the first of a two-part series dealing with the effects of sorbent injection processes on particulate properties. Part I reviews the effects on particulate properties of low-temperature sorbent injection processes (those processes that treat flue gas at temperatures near 300 °F). Part II reviews the effects on particulate properties of high-temperature sorbent injection processes (those processes that involve sorbent injection into the combustion or economizer sections of a boiler). In this article, we review what is currently known about the effects of the low-temperature sorbent injection processes on electrical resistivity, particulate mass loading, particulate size distribution, particulate morphology and cohesivity.

Mixtures of ash and sorbent produced by low-temperature sorbent injection processes are typically less cohesive than most types of fly ash. At temperatures within 30 °F of the water dew point, the combination of low cohesivity and low electrical resistivity of the ash and sorbent mixtures can cause electrical reentrainment in electrostatic precipitators. Deliquescent additives such as calcium chloride cause the water to be retained on the particle surface, thereby increasing cohesivity.

Sorbent injection has been reported to increase the particulate mass loading by a factor of 1.8 to 10, depending upon the reagent ratio and the coal sulfur content. Conventional and in-duct spray drying processes tend to shift the particle size distribution toward larger particles, while dry injection processes tend to shift the particle size distribution toward smaller particles.  相似文献   

6.
ABSTRACT

This study investigated the effects of feedstock additives [polyvinyl chloride (PVC) and NaCl] and spray dryer additives (SiO2, CaCl2, NaHCO3) on heavy metal and fly ash removal efficiencies, and on particle size distribution of heavy metals. A spray dryer with an integrated fabric filter was used as an air pollution control device (APCD). Removal efficiencies for fly ash and heavy metals were greater than 95 and 90%, respectively. When additives of PVC or NaCl were used, the concentration of heavy metals distributed in fly ash apparently varied when the particle diameter was <1 μm. Although the effects of the additives SiO2, CaCl2, and NaHCO3 on the elemental size distribution of Cr were insignificant, these additives did slightly increase concentrations of Cd, Zn, and Pb partitioning in coarser particles (>1μm).  相似文献   

7.
The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbents for flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a laboratory scale grinder prior to slurring in order to decrease the slurring time needed for the sorbent to be reactive with SO2. Reactivity of ADVACATE sorbents with SO2 in the bench-scale reactor correlated with their surface area.

ADVACATE sorbents produced with ground fly ash were evaluated in the 50 cfm (85 m3/h) pilot plant providing 2 s duct residence time. ADVACATE sorbent was produced by slurrying ground fly ash (median particle size of 4.3 µm) with Ca(OH)2 at the weight ratio of 3:1 at 90°C (194°F) for 3hto yield solids with 30 weight percent of initial free moisture. When this sorbent was injected into the duct with 1500 ppm SO2 and at 11°C (20°F) approach to saturation, the measured SO2 removal was approximately 60percent at a Ca/S stoichiometric ratio of 2. Previously, when ADVACATE sorbent was produced at 90°C (194°F) and at the same fly-ash-to-Ca(OH)2 weight ratio using unground fly ash, removal under the same conditions in the duct was approximately 50 percent following 12 h slurring. The report presents the results of pilot-scale recycle tests at the recycle ratio of 2. Finally, the report discusses future U.S. Environmental Protection Agency plans for commercialization of ADVACATE.  相似文献   

8.
Abstract

A completely mixed batch reactor leaching method utilizing flow injection analysis (the CMBR-FIA method) was developed to study the lead leaching characteristics of municipal waste combustor fly ash. Flow injection analysis (FIA) coupled with atomic absorption spectrophotometry enabled the determination of lead concentrations at one minute intervals. The pH and oxidation-reduction potential of the solution were continuously monitored to characterize the leaching conditions. Automatic titration was used to alter the solution pH to defined endpoints. The CMBR-FIA method offers the ability to immediately observe alterations to the leaching solution, and grants the freedom to study a number of parameters concurrently. The CMBR-FIA method is a rapid and reliable means to investigate leaching characteristics. This paper describes the method and demonstrates its use to monitor the leaching of lead from municipal solid waste combustor fly ash as a function of pH. Soluble lead concentrations are shown to increase quickly with decreasing pH.

A maximum of 50% of the total lead concentration was available in solution at pH 2. This value gradually decreased with time to over 35% of the total.  相似文献   

9.
采用正交实验 ,研究了水合制备高效钙基烟气脱硫剂时各制备条件对产物的影响。结果表明 ,水合时间、水合温度Ca(OH) 2 /CaSO4的质量比 ,以及飞灰 / (Ca(OH) 2 +CaSO4)质量比四个条件对脱硫剂比表面积的形成有显著的影响 ;从而由单因素实验得出一最佳钙基脱硫剂制备条件组合。此外 ,通过XDR分析 ,测定了脱硫剂的物相组成 ,扫描电镜观察显示飞灰和水合吸收剂具有不同的表面形态  相似文献   

10.
Novel silica-enhanced lime sorbents were tested in a bench-scale sand-bed reactor for their potential for SO2 removal from flue gas. Reactor conditions were 64°C (147°F), relative humidity of 60 percent [corresponding to an approach to saturation temperature of 10°C (18°F)], and inlet SO2 concentration of 500 or 1000 ppm. The sorbents were prepared by pressure hydration of CaO or Ca(OH)2 with siliceous materials at 100°C (101 kPa) [212°F (14.7 psi)] to 230°C (2793 kPa) [446°F (405 psi)] for 15 min to 4 h. Pressure hydration fostered the formation of a sorbent reactive with SO2 from fly ash and Ca(OH)2 in a much shorter time than did atmospheric hydration. The conversion of Ca(OH)2 in the sand-bed reactor increased with the increasing weight ratio of fly ash to lime and correlated well with B.E.T. surface area, increasing with increasing surface area. The optimum temperature range for the pressure-hydration of fly ash with Ca(OH)2 was between 110 and 160°C (230 and 320 °F). The pressure hydration of diatomaceous earth with CaO did not offer significant reactivity advantages over atmospheric hydration; however, the rate of enhancement of Ca(OH)2 conversions was much faster with pressure hydration. Scanning electron microscope (SEM) and x-ray diffraction studies showed solids of different morphology with different fly ash/lime ratios and changing conditions of pressure hydration.  相似文献   

11.
通过对金矿矿区炼金废渣的酸中和能力、净产酸量及浸出毒性实验,测定了废渣的产酸潜力及重金属砷、镉、铅、锌的总量和它们的浸出量。为了合理处置矿区炼金废渣,并为矿区重金属污染土壤的修复提供技术支持,采用石灰、粉煤灰、堆肥化污泥作为添加剂对废渣进行固化/稳定化处理;通过浸出毒性实验对固化/稳定化处理效果进行综合分析,试图寻求一种最佳的稳定剂。结果表明,无论是单独添加石灰、粉煤灰或者堆肥化污泥还是两两组合混合添加,样品浸出液的pH都有升高,As、Cd的浸出浓度都有明显下降,而且两两组合添加比单独添加的固化/稳定化处理效果更好。在两两组合添加中,粉煤灰混合堆肥化污泥的处理效果最好,浸出液的pH值达到7.82,As、Cd的浸出率分别下降72.0%和72.2%。说明粉煤灰混合堆肥化污泥处理炼金废渣效果最佳,同时具有以废治污的资源化生态效能。  相似文献   

12.
Abstract

Artificially contaminated (spiked) natural soils were solidified/stabilized using various combinations of commonly used additives, such as lime, cement, fly ash, activated carbon, and silica fume. The effectiveness of the solidification/stabilization (S/S) processes was evaluated based on experimental findings from compaction testing, unconfined compressive shear strength, and X-ray diffraction (XRD). Correlations of limited reliability between unconfined compressive strength and penetrometer and torvane measurements were derived. Results from XRD experiments indicated that certain organic contaminants (i.e., naphthalene and pyrene) might impact the S/S processes for a given combination of additives. The type and amount of organic contaminants also affected the pozzolanic reactions. Specifically, the absence or small peak intensity of pozzolanic product XRD patterns for a given combination of additives was a good indication that the type and the amount of organic contaminant present inhibited pozzolanic reactions. This phenomenon was tested and confirmed for actual field-contaminated samples.  相似文献   

13.
Method 30B and the Ontario Hydro Method (OHM) were used to sample the mercury in the flue gas discharged from the seven power plants in Guizhou Province, southwest China. In order to investigate the mercury migration and transformation during coal combustion and pollution control process, the contents of mercury in coal samples, bottom ash, fly ash, and gypsum were measured. The mercury in the flue gas released into the atmosphere mainly existed in the form of Hg°. The precipitator shows a superior ability to remove Hgp (particulate mercury) from flue gas. The removal efficiency of Hg2+ by wet flue gas desulfurization (WFGD) was significantly higher than that for the other two forms of mercury. The synergistic removal efficiency of mercury by the air pollution control devices (APCDs) installed in the studied power plants is 66.69–97.56%. The Hg mass balance for the tested seven coal-fired power plants varied from 72.87% to 109.67% during the sampling time. After flue gas flowing through APCDs, most of the mercury in coal was enriched in fly ash and gypsum, with only a small portion released into the atmosphere with the flue gas. The maximum discharge source of Hg for power plants was fly ash and gypsum instead of Hg emitted with flue gas through the chimney into the atmosphere. With the continuous upgrading of APCDs, more and more mercury will be enriched in fly ash and gypsum. Extra attention should be paid to the re-release of mercury from the reutilization of by-products from APCDs.

Implications: Method 30B and the Ontario Hydro Method (OHM) were used to test the mercury concentration in the flue gas discharged from seven power plants in Guizhou Province, China. The concentrations of mercury in coal samples, bottom ash, fly ash, and gypsum were also measured. By comparison of the mercury content of different products, we found that the maximum discharge source of Hg for power plants was fly ash and gypsum, instead of Hg emitted with flue gas through the chimney into the atmosphere. With the continuous upgrading of APCDs, more and more mercury will be enriched in fly ash and gypsum. Extra attention should be paid to the re-release of mercury from the reutilization of by-products from APCDs.  相似文献   


14.
ABSTRACT

Step tracer tests were carried out on lab-scale biofilters to determine the residence time distributions (RTDs) of gases passing through two types of biofilters: a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow. Results were used to define the flow patterns in the reactors. “Non-ideal flow” indicates that the flow reactors did not behave like either type of ideal reactor: the perfectly stirred reactor [often called a "continuously stirred tank reactor" (CSTR)] or the plug-flow reactor.

The horizontal biofilter with back-mixing was able to accommodate a shorter residence time without the usual requirement of greater biofilter surface area for increased biofiltration efficiency. Experimental results indicated that the first bed of the modified biofilter behaved like two CSTRs in series, while the second bed may be represented by two or three CSTRs in series. Because of the flow baffles used in the horizontal biofilter system, its performance was more similar to completely mixed systems, and hence, it could not be modeled as a plug-flow reactor. For the standard biofilter, the number of CSTRs was found to be between 2 and 9 depending on the airflow rate. In terms of NH3 removal efficiency and elimination capacity, the standard biofilter was not as good as the modified system; moreover, the second bed of the modified biofilter exhibited greater removal efficiency than the first bed. The elimination rate increased as biofilter load increased. An opposite trend was exhibited with respect to removal efficiency.  相似文献   

15.
The use of coal fly ash as a fluoride retention additive has been studied as a way of treating flue gas desulphurisation (FGD) gypsum for its disposal in landfills. With this end leaching studies following the standard EN-12457-4 [Characterization of waste- Leaching-Compliance test for leaching of granular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10l/kg for materials with particle size below 10mm (without or with size reduction)] have been performed on FGD gypsum samples treated with different proportions of fly ash (0.1-100%). It was found that the fluoride leachable content in FGD gypsum was reduced in the range 1-55%, depending on the fly ash proportion added to FGD gypsum. High levels of fluoride leaching reduction (close to 40%) were achieved even at relatively low fly ash additions (5%). So, low fly ash incorporations assure the characterization of this by-product as a waste acceptable at landfills for non-hazardous wastes according to the Council Decision 2003/33/EC [Council Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC] on waste disposal. Furthermore, the effectiveness of the proposed FGD gypsum stabilization method was also studied in column leaching systems, proving its good performance in simulated conditions of disposal. In such conditions a fluoride leaching reduction value slightly higher than 25% was displayed for a fly ash added amount of 5%.  相似文献   

16.
This study investigated the effects of feedstock additives [polyvinyl chloride (PVC) and NaCl] and spray dryer additives (SiO2, CaCl2, NaHCO3) on heavy metal and fly ash removal efficiencies, and on particle size distribution of heavy metals. A spray dryer with an integrated fabric filter was used as an air pollution control device (APCD). Removal efficiencies for fly ash and heavy metals were greater than 95 and 90%, respectively. When additives of PVC or NaCl were used, the concentration of heavy metals distributed in fly ash apparently varied when the particle diameter was <1 microm. Although the effects of the additives SiO2, CaCl2, and NaHCO3 on the elemental size distribution of Cr were insignificant, these additives did slightly increase concentrations of Cd, Zn, and Pb partitioning in coarser particles (>1 microm).  相似文献   

17.
Abstract

This investigation studied the effects of injecting dry hydrated lime into flue gas to reduce sulfur trioxide, (SO3) concentrations and consequently stack opacity at the University of Missouri-Columbia power plant. The opacity was due to sulf uric acid mist forming at the stack from high SO3 concentrations. As a result of light scattering by the mist, a visible plume leaves the stack. Therefore, reducing high concentrations of SO3 reduces the sulfuric acid mist and consequently the opacity. To reduce SO3 concentrations, dry hydrated lime is periodically injected into the flue gas upstream of a baghouse and downstream of an induced draft fan. The hydrated lime is transported downstream by the flue gas and deposited on the filter bags in the baghouse forming a filter cake. The reaction between the SO3 and the hydrated lime takes place on the filter bags. The hydrated lime injection system has resulted in at least 95% reduction in the SO3 concentration and has reduced the opacity to acceptable limits. Low capital equipment requirements, low operating cost, and increased bag life make the system very attractive to industries with similar problems.  相似文献   

18.
滤料负载粉尘层对气态汞脱除性能的实验研究   总被引:1,自引:0,他引:1  
通过不同性能纤维滤料负载燃煤飞灰粉尘层,来模拟袋式除尘器滤袋表面粉尘附着层,进而研究袋滤器用不同性能纤维滤料和粉尘附着层对燃煤烟气中Hg0的联合脱除性能。在固定床实验系统上分别进行了不同纤维滤料和燃煤飞灰粉尘层,以及经实验优选得到的华博特滤料负载燃煤飞灰粉尘层脱除燃煤烟气中Hg0的实验研究。结果表明,燃煤飞灰粉尘层和华博特滤料对Hg0分别有一定的脱除作用,脱除效率可达35%和42.5%,它们对Hg0的脱除是物理吸附和化学吸附共同作用的结果;同时,华博特滤料负载燃煤飞灰粉尘层对Hg0的联合脱除效率受到吸附反应温度、入口汞浓度和烟气停留时间等因素的影响,最佳脱汞率可达64.4%;吸附反应温度越高,脱除效率越低;烟气停留时间越大,脱除效率越高;入口汞浓度的提高并不一定提高华博特滤料负载飞灰粉尘层的脱汞效果。  相似文献   

19.
市政污泥深度脱水药剂优化研究   总被引:1,自引:0,他引:1  
污泥含水率高影响污泥后续处置。利用化学药剂对污泥进行深度脱水处理可使污泥减量化、稳定化。为提高深度脱水效果,对添加剂进行了种类和添加量的优化研究(石灰、工业石灰、粉煤灰、硅藻土、十二烷基磺酸钠和飞灰;5%、10%、15%、20%、25%和30%),另外,还进行了复合投加实验。研究结果表明,石灰、工业石灰、粉煤灰的深度脱水效果最好;复合添加中,25%石灰+5%粉煤灰,20%石灰+10%粉煤灰,10%石灰+20%粉煤灰的深度脱水效果最好。5%的石灰或者工业石灰的添加剂量使干化污泥pH值达到12.25,粉煤灰、硅藻土、十二烷基磺酸钠和飞灰的添加对干化污泥pH值影响相对要小。  相似文献   

20.
ABSTRACT

The chemical speciation of Ni in fly ash produced from ~0.85 wt % S residual (no. 6 fuel) oils in laboratory (7 kW)- and utility (400 MW)-scale combustion systems was investigated using X-ray absorption fine structure (XAFS) spectroscopy, X-ray diffraction (XRD), and acetate extraction [1 M NaOAc-0.5 M HOAc (pH 5) at 25 °C]-anodic stripping voltammetry (ASV). XAFS was also used to determine the Ni speciation of ambient particulate matter (PM) sampled near the 400-MW system. Based on XAFS analyses of bulk fly ash and their corresponding acetate extraction residue, it is estimated that >99% of the total Ni (0.38 wt %) in the experimentally produced fly ash occurs as NiSO4-xH2O, whereas >95% of the total Ni (1.70 and 2.25 wt %) in two fly ash samples from the 400-MW system occurs as NiSO4-xH2O and Ni-bearing spinel, possibly NiFe2O4. Spinel was also detected using XRD. Acetate extracts most of the NiSO4-xH2O and concentrates insoluble NiFe2O4 in extraction residue. Similar to fly ash, ambient PM contains NiSO4-xH2O and NiFe2O4;

however, the proportion of NiSO4-xH2O relative to NiFe2O4 is much greater in the PM. Results from this and previous investigations indicate that residual oil ash produced in the 7-kW combustion system lack insoluble Ni (e.g., NiFe2O4) but are enriched in soluble NiSO4-xH2O relative to fly ash from utility-scale systems. This difference in Ni speciation is most likely related to the lack of additive [e.g., Mg(OH)2] injection and residence time in the 7-kW combustion system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号