首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
When females receive no direct benefits from multiple matings, concurrent multiple paternity is often explained by indirect genetic benefits to offspring. To examine such possibilities, we analyzed genetic paternity for 1,272 hatchlings, representing 227 clutches, from a nesting population of painted turtles (Chrysemys picta) on the Mississippi River. Goals were to quantify the incidence and distribution of concurrent multiple paternity across clutches, examine temporal patterns of sperm storage by females, and deduce the extent to which indirect benefits result from polyandrous female behaviors. Blood samples from adult males also allowed us to genetically identify the sires of surveyed clutches and to assess phenotypic variation associated with male fitness. From the genetic data, female and male reproductive success were deduced and then interpreted together with field data to evaluate possible effects of female mating behaviors and sire identity on offspring fitness. We document that more than 30% of the clutches were likely fathered by multiple males, and that presence of multiple paternity was positively correlated with clutch size. Furthermore, the data indicate that the second male to mate typically had high paternity precedence over the first.  相似文献   

2.
Sexual selection theory predicts different optima for multiple mating in males and females. We used mating experiments and genetic paternity testing to disentangle pre- and postcopulatory mechanisms of sexual selection and alternate reproductive tactics in the highly promiscuous lizard Eulamprus heatwolei. Both sexes mated multiply: 30–60 % of clutches were sired by two to four fathers, depending on the experiment. Larger males sired more offspring when we allowed male contest competition: 52 % of large males but only 14 % of small males sired at least one offspring. In the absence of male contest competition, females mated promiscuously and there was no large male advantage: 80 % of large males and 90 % of small males sired at least one offspring, and there was no evidence for last-male precedence. Multiple mating did not yield obvious direct or indirect benefits to females. E. heatwolei represents a complex system in which males attempt to improve their fertility success by limiting rivals from access to females and through adopting alternate reproductive tactics. Conversely, females exhibit no obvious precopulatory mate choice but may influence fitness through postcopulatory means by either promoting sperm competition or through cryptic female choice. Our results support the hypothesis that female multiple mating in nonavian reptiles is best explained by the combined effect of mate encounter frequency and high benefits to males but low costs to females.  相似文献   

3.
In groups with multiple males, direct mate competition may select for the evolution of dominance hierarchies that sort males into a queue for access to fertile females. The priority-of-access (PoA) model proposed by Altmann in 1962 makes explicit predictions about the resulting paternity distribution based on an interaction between male dominance rank and the overlap of female receptive phases. Here, we investigated whether the logic of the PoA model predicted the distribution of paternity across ranks in a seasonal breeder with high reproductive synchrony over six consecutive mating seasons. We studied 18 males that resided in a group of wild Assamese macaques (Macaca assamensis) in their natural habitat at Phu Khieo Wildlife Sanctuary, Thailand, between 2006 and 2011 with 5 to 13 conceptions per season. We assessed whether mate guarding increased paternity success, described “short-term” deviations from predicted paternity distribution, and examined how these are related to the number of competitors and fertile females. We determined genetic paternity of 43 (93 %) offspring born into the study group and found reproductive skew to be relatively low with 29 % alpha male paternity in accordance with the high degree of female reproductive synchrony observed. Short-term deviations from expected paternity distribution over ranks were not explained by the number of resident males or the number of conceiving females or their interaction. Within the limits of this study, these results suggest that even if males cannot discern female fertile phases, if reproduction is seasonal, and if reproductive synchrony is high, males may also compete directly over access to females.  相似文献   

4.
In some species, sperm is stored within the female reproductive tract for months to years, and yet remains viable to fertilize eggs and produce offspring. Female red-sided garter snakes store sperm for over 7 months of winter dormancy. In previous work, we demonstrated that these stored sperm account for an average of 25 % paternity of a litter when the female mates with a male at spring emergence. Here, we tested whether last-male sperm precedence was prevalent when a female mates with two males during the spring. On average, paternity was shared equally among the first (P1 proportion of paternity of the first male to mate) and second males (P2) to mate in the spring, and stored sperm (Pss), but the variance in paternity was high. Thus, last male sperm precedence may diminish when a female has more than two mates. Male size did not affect paternity, but, as the interval between matings increased, P1 increased at the expense of Pss. Interestingly, as the second spring male’s copulation duration increased, P1 also increased at the expense of P2. This result suggests that female influence over sperm and/or copulatory plug transfer during matings may also affect which male fathers her offspring in response to coercive matings as we assisted females to mate for their second mating. Finally, all females were spring “virgins”; consequently, sperm stored from autumn matings (and/or previous spring matings) remain competitive even when faced with two rivals in sperm competition and is likely the driver of the evolution of sperm longevity.  相似文献   

5.
In a wide variety of species, male reproductive success is determined by contest for access to females. Among multi-male primate groups, however, factors in addition to male competitive ability may also influence paternity outcome, although their exact nature and force is still largely unclear. Here, we have investigated in a group of free-ranging Barbary macaques whether paternity is determined on the pre- or postcopulatory level and how male competitive ability and female direct mate choice during the female fertile phase are related to male reproductive success. Behavioural observations were combined with faecal hormone analysis for timing of the fertile phase (13 cycles, 8 females) and genetic paternity analysis (n = 12). During the fertile phase, complete monopolisation of females did not occur. Females were consorted for only 49% of observation time, and all females had ejaculatory copulations with several males. Thus, in all cases, paternity was determined on the postcopulatory level. More than 80% of infants were sired by high-ranking males, and this reproductive skew was related to both, male competitive ability and female direct mate choice as high-ranking males spent more time in consort with females than low-ranking males, and females solicited copulations mainly from dominant males. As most ejaculatory copulations were female-initiated, female direct mate choice appeared to have the highest impact on male reproductive success. However, female preference was not directly translated into paternity, as fathers were not preferred over non-fathers in terms of solicitation, consortship and mating behaviour. Collectively, our data show that in the Barbary macaque, both sexes significantly influence male mating success, but that sperm of several males generally compete within the female reproductive tract and that therefore paternity is determined by mechanisms operating at the postcopulatory level.  相似文献   

6.
Summary The influence of the female on the process of sperm storage and use was examined. Copula duration, the condition of the female and whether or not a copula terminated naturally influenced the number of spermathecae (of three) in which once-mated females stored sperm. Females stored more sperm the larger their mate and the sperm from larger males were stored more unevenly amongst the spermathecae than were those from smaller males. Double-mated females had sperm in fewer spermathecae the larger the second of their mates and these spermathecae tended to be the ones which lay together within the female. The P2 values over three successive clutches were constant and sperm precedence was complete when the larger male was second to mate but began low and increased over subsequent clutches when the smaller male mated second. These results suggest females prefer, and are able, to use the sperm of larger males to fertilise their eggs. It is proposed that multiple spermathecae in Diptera have evolved to give females better control over offspring paternity.  相似文献   

7.
Females sometimes obtain older sires for their offspring through extra-pair interactions, but how female age influences paternity is largely unexplored and interactive effects across the age span of both sexes have not been analyzed. To test whether female choice of sire age varies with female age in the blue-footed booby (Sula nebouxii), we examined associations between ages of both partners and the probability of extra-pair paternity (EPP) in 350 broods of parents up to 22 years old in a single breeding season. Extra-pair paternity enables a female to select an alternative sire for her offspring and could function to avoid or achieve particular combinations of parental ages. A male age?×?female age interaction revealed that in young females (≤4 years), EPP decreased with increasing age of the social partner, whereas in old females (≥8 years), it increased. Moreover, sires of extra-pair (EP) chicks of young females paired to young males were on average 6.33 years older than the females’ social partners. Since female boobies control copulatory access, this pattern could imply that young females choose old sires for their proven genetic quality and that old females avoid very old males because matings with them may risk infertility or genetic defects in offspring. Taking female age into account and observing across the whole age span may be necessary for understanding female age-based mate choice.  相似文献   

8.
Females often show multi-male mating (MMM), but the adaptive functions are unclear. We tested whether female house mice (Mus musculus musculus) show MMM when they can choose their mates without male coercion. We released 32 females into separate enclosures where they could choose to mate with two neighboring males that were restricted to their own territories. We also tested whether females increase MMM when the available males appeared unable to exclude intruders from their territories. To manipulate territorial intrusion, we introduced scent-marked tiles from the neighboring males into males' territories, or we rearranged tiles within males' own territories as a control. Each female was tested in treatment and control conditions and we conducted paternity analyses on the 57 litters produced. We found that 46 % of litters were multiply sired, indicating that multiple paternity is common when females can choose their mates. Intrusion did not increase multiple paternity, though multiple paternity was significantly greater in the first trial when the males were virgins compared to the second trial. Since virgin male mice are highly infanticidal, this finding is consistent with the infanticide avoidance hypothesis. We also found that multiple paternity was higher when competing males showed small differences in their amount of scent marking, suggesting that females reduce MMM when they can detect differences in males' quality. Finally, multiple paternity was associated with increased litter size but only in the intrusion treatment, which suggests that the effect of multiple paternity on offspring number is dependent on male–male interactions.  相似文献   

9.
Paternity of offspring in natural populations of insects has received little attention due to the difficulties inherent in following females and sampling each of their mates. Here, an existing statistical technique is modified to estimate paternity based on allozyme variation found in the female and her last mate, thus allowing paternity in nature to be studied by collecting copulating pairs of insects. Using this technique, paternity was investigated in naturally-occurring females of the arctiid moth Utetheisa ornatrix. These females mate promiscuously: upon dissection, they were found to contain up to 13 spermatophores. Statistical paternity estimation revealed considerable variation in the share of offspring sired by the female's last mate: approximately 25% of the males sired all the offspring, while another 25% fathered no offspring; the remainder sired at least some offspring. The proportion of offspring sired by the last male did not correlate with latency to oviposition, the extent of previous mating by the female, or male wing length. Male U. ornatrix are known to make substantial nuptial investments during mating, and this study shows that mating males frequently sire few or no offspring. Thus, male moths stand a chance of being cuckolded.  相似文献   

10.
Brown jays (Cyanocorax morio) are long-lived, social corvids that live in large, stable, territorial groups (mean = 10 individuals). In this study, I determined the distribution of reproductive success within groups using multi-locus DNA fingerprinting. Breeding females produced virtually all (99%) of the young within their own nests. Reproduction within groups was highly skewed towards a single primary female, although long term data indicate that secondary females (female breeders that were usually younger and subordinate to the primary female) were sometimes successful. The high reproductive skew observed for females was associated with primary female aggression. Successful reproduction by secondary females may have been due to parental facilitation or the inability of primary females to completely suppress secondary females. Multiple paternity occurred in 31–43% of broods and extra-group paternity occurred in a minimum of 22% of broods. Patterns of paternity also varied between years, since females often switched or included new genetic mates. Although male consorts of nesting females fathered relatively few offspring (20%), they still had a higher chance of fathering offspring than any other single group male. Reproduction was less skewed for males than females as a result of female mating patterns. Female reproductive patterns are consistent with some of the predictions and assumptions from optimal skew models, while male reproductive patterns are not. The factors affecting skew in species with complex social systems such as incomplete control by breeders over subordinate reproduction, female control of paternity, and resource inheritance have not been well incorporated into reproductive skew models.Communicated by: J. Dickinson  相似文献   

11.
Genetic analyses of parentage provide crucial information about the prevalence of polyandry and the potential for sexual selection to operate in wild populations. In the swordtail Xiphophorus nigrensis, large males are thought to have a competitive advantage due to their superiority in male–male contests and attractiveness to females, who are presumed to mate multiply. I examined the distribution of paternity within broods, the relationship between male body size and paternity and the effect of sire number on fecundity from females collected in the field. Sixty-one percent of females produced offspring from two to four males, with 70% of the offspring typically sired by one of the males represented in the brood. Male body size did not affect paternity share or whether females were multiply mated, as predicted if precopulatory sexual selection has a strong effect on the outcome of postcopulatory sexual selection. Female fecundity increased with the number of sires; however, this relationship was not observed when the smallest broods, where multiple mating is more difficult to detect, were excluded from the analysis. The high levels of multiple paternity and reproductive skew suggest that postcopulatory sexual selection has important evolutionary consequences in X. nigrensis. Traits important in precopulatory sexual selection, such as male body size, however, are more likely to affect sexual selection by increasing the number of mates obtained rather than paternity share within broods.  相似文献   

12.
Sperm storage is widespread in many vertebrate groups, and it is frequently associated with promiscuous mating systems. Chelonian species are one of the most outstanding examples of a promiscuous group capable of long-term sperm storage; specialized structures have evolved within the oviducts of these vertebrates to ensure sperm vitality across reproductive cycles. Thus far, few studies have investigated the factors regulating multiple paternity, sperm usage by females and paternity distribution in successive clutches. This study aimed to investigate the effect of mating order on male mounting and reproductive success in Testudo hermanni hermanni, combining behavioural and genetic data. A series of planned matings were performed, within which experimental females were mated sequentially to two different males under controlled conditions. Observations conducted during experimental matings revealed that courtship displays did not significantly differ between the first and second males to mate with a female. Interactions ending with a mount were characterized by a significantly higher intensity and occurrence of determinate courtship behaviours, for example biting and running after the female. Paternity analysis performed on hatchlings produced from experimental females revealed that 46 % of the clutches were multi-sired. A significant contribution of previous years' partners was still found, thus confirming the long-term sperm storage within the female oviduct in this species. Finally, mating order did not significantly affect the reproductive success of experimental males during the on-going reproductive season.  相似文献   

13.
Sex allocation theory predicts that if variance in reproductive success differs between the sexes, females who are able to produce high-quality young should bias offspring sex ratio towards the sex with the higher potential reproductive success. We tested the hypothesis that high-quality (i.e., heavy) female eastern kingbirds (Tyrannus tyrannus) that bred early in the breeding season would produce male-biased clutches. A significant opportunity for sexual selection also exists in this socially monogamous but cryptically polygamous species, and we predicted that successful extra-pair (EP) sires would be associated with an excess of male offspring. Although population brood sex ratio did not differ from parity, it increased significantly with female body mass and declined with female breeding date, but was independent of the morphology and display (song) behavior (correlates of reproductive success) of social males and EP sires. Male offspring were significantly heavier than female offspring at fledging. Moreover, the probability that male offspring were resighted in subsequent years declined with breeding date, and was greater in replacement clutches, but lower when clutch size was large. Probability of resighting female offspring varied annually, but was independent of all other variables. Given that variance in reproductive success of male kingbirds is much greater than that of females, and that male offspring are more expensive to produce and have a higher probability of recruitment if fledged early in the season, our results support predictions of sex allocation theory: high-quality (heavy) females breeding when conditions were optimal for male recruitment produced an excess of sons.  相似文献   

14.
Male competition for mates and female mate choice are key mechanisms involved in sexual selection. Surprisingly, these mechanisms have often been investigated separately although they appear to interact in many species. Male–male competition for territories located at the best places or to establish dominance relationships often explain mating patterns. Such male behaviours may affect and sometimes even hinder female mate choice, as in the case of sexual coercion. While in many species females are able to exert cryptic control over paternity (i.e. a process allowing females to bias offspring production toward certain males after intromission), in other species external fertilisation prevents females from doing so. This is the case in the waterfrog hybridisation complex where the hybrid Pelophylax esculentus can only produce viable offspring by pairing with the parental species Pelophylax lessonae (hybridogenetic reproduction). We examined two potential processes that could enhance such mating combinations. Firstly, by monitoring male spatial distribution within six choruses, we showed that the proportion of P. lessonae males located at the edge (in the best position to grasp females arriving at the chorus) cannot explain the frequency of mating combinations observed. Secondly, an experimental approach emphasised a new way for anuran females to favour paternity of a particular male in a sexual coercion context. When females are forcefully paired with an incompatible male, they cannot remove the male grasped on their back by themselves. Nevertheless, by controlling the movement of the pair within the chorus, these females often change mates by enhancing male competition instead of laying eggs. In many species with externally fertilised eggs, it may be thus necessary to take into account this new possibility for females to control offspring paternity.  相似文献   

15.
In polygynous species, males appear to gain additional offspring by pairing with multiple females simultaneously. However, this may not be true if some females copulate outside of the social pair bond. Polygynous males could experience lower paternity because of trade-offs among gaining multiple social mates, guarding fertility with these mates, and pursuing extra-pair matings. Alternatively, polygynous males could simultaneously gain extra social mates and have high paternity, either because of female preferences or because of male competitive attributes. We tested four predictions stemming from these hypotheses in a facultatively polygynous songbird, the dickcissel (Spiza americana). Unlike most previous studies, we found that males with higher social mating success (harem size) also tended to have higher within-pair paternity and that the number of extra-pair young a male sired increased significantly with his social mating success. Females that paired with mated males were not more likely to produce extra-pair young. In contrast, extra-pair paternity was significantly lower in the nests of females whose nesting activity overlapped that of another female on the same territory. This pattern of mating was robust to differences in breeding density. Indeed, breeding density had no effect on either extra-pair mating or on the association between polygyny and paternity. Finally, nest survival increased with harem size. This result, combined with the positive association between polygyny and paternity, contributed to significantly higher realized reproductive success by polygynous male dickcissels.  相似文献   

16.
Male–male competition has historically been considered the major force driving sexual selection. However, female choice and inter-sexual conflict are increasingly recognized as important influences affecting differential mating and reproductive success. Many females exhibit preferences for particular males; however, male strategies may conflict with females’ ability to obtain their mate preferences. To influence paternity, females must affect both (1) whether or not sexual interactions occur, particularly during the periovulatory period (POP) and (2) the outcome of sexual interactions. This study focuses on the effectiveness of female choice in wild chimpanzees (Pan troglodytes verus). Over 2,600 h of data were collected on two habituated chimpanzee communities in the Taï National Park, Côte d’Ivoire. Female mate preferences were measured by quantifying proceptive and resistance behavior toward males in both the periovulatory period and non-POP phases of estrus. The efficacy of female preference was measured both (1) by measuring success rates of female proceptivity and resistance behaviors and (2) by determining how well measures of female mate preference (proceptivity and resistance rates) predict male mating success. Though male chimpanzees are clearly dominant to females, the results indicate that females could effectively resist male solicitations and, in most cases, unwanted copulations were averted. Both female proceptivity and resistance rates correlate (positively and inversely, respectively) with male mating success in POP. Outside POP, female proceptivity rates corresponded with male mating success, but resistance rates did not. Males (irrespective of rank) that were preferred by females obtained higher mating success compared to other males during the POP, suggesting that females were effective in their mate choice and that, despite clear male dominance, female choice influences paternity in wild chimpanzees.  相似文献   

17.
Males frequently mate multiply, but are there negative fitness consequences for their later mates? Potential costs include less sperm and less nutrition. In most hymenopterans, daughters, but not sons, are produced sexually. This mean that effects of being a later mate on sperm received versus on nutrients received should be distinguishable. If later mates receive less sperm, it should manifest as a reduction in daughter production, whereas a reduction in nutrients should affect production of both sexes. Any cost to being a later mate may in turn select for polyandry or for female choice of virgin males. Males of the parasitoid wasp Spalangia endius were presented with up to five females in succession. Offspring production was compared among first, third, and fifth females; and it did not differ. However, about half of fifth females had begun producing only sons by their tenth day, whereas first and third females rarely had. Despite the reduction in daughter production, even fifth females rarely remated. However, females tended to mate with virgin males rather than mated males when given a choice. This tendency was dependent on male, not female, behavior, but should benefit the female nevertheless. Sex ratios in this species are one male for every one and a half to three females. Thus, the number of times that males could mate before daughter production was reduced coincided roughly with the mean number of times that males likely mate in this species. Nevertheless, some females are likely to experience the cost of being a fifth female because of skewed mating success among males.  相似文献   

18.
Extra-pair fertilizations are common in many socially monogamous species, and paternity studies have indicated that females may use male vocal performance and plumage ornaments as cues to assess male quality. Female off-territory forays may represent a key component of female choice and male extra-pair mating success, and female foray behaviour is expected to be strongly influenced by indictors of male quality. In this study, we examined how male song and ornamentation affect how often females left their territories, which males they visited and extra-pair paternity in a socially monogamous passerine, the hooded warbler (Wilsonia citrina). We radiotracked 17 females during the fertile period and quantified male vocal performance (song output and rate) and plumage characteristics (size of the black melanin hood and colour of the black hood, yellow cheeks and breast areas). We obtained blood samples and determined paternity at 35 nests including those of 14 females that we radiotracked. Eleven (65%) of the 17 females forayed off-territory, whilst fertile and female foray rate was positively correlated with the number of extra-pair young in the nest. Females that left their territories more frequently were paired with males that sang at a low rate. In addition, extra-pair mates had higher song rates than the social mates they cuckolded (5.3 songs/min vs. 4.4 songs/min). Female off-territory forays or extra-pair paternity were not significantly related to male plumage characteristics. Our results indicate that a high song rate influences both the foray behaviour of a male’s social mate and the likelihood that he will sire extra-pair offspring with neighbouring females.  相似文献   

19.
Males of many species theoretically face a fitness tradeoff between mating and parental effort, but quantification of this is rare. We estimated the magnitude of the mating opportunity cost paid by incubating male Temminck’s stints (Calidris temminckii), taking advantage of uniparental care provided by both sexes in this species. “Incubating males” provide all care for an early clutch, limiting subsequent mating possibilities. “Non-incubating” males include males that failed to obtain, lost to predation, or actively avoided incubating clutches. These males were free to pursue extrapair copulations and to mate with females laying later clutches, which females usually incubate themselves. Male incubation classes did not differ in measures of quality, and many individuals changed classes between years, suggesting the use of conditional reproductive tactics. However, specialist non-incubators may also exist. Using microsatellites to assign parentage, we compare males’ total fertilizations and the subset “free of care” fertilizations between incubation classes. Incubators were more likely to gain at least one fertilization per season and averaged one more per season than non-incubators. However, successful non-incubators were more likely to gain “free of care” fertilizations, averaging two more than successful incubators. The relative success of male incubation classes also changed with local sex ratios. With higher female proportions, non-incubators gained disproportionately more offspring, suggesting that the use of tactics should be partly determined by the availability of potentially incubating females. Overall, we estimate the opportunity cost of incubating to be 13–25 % of the potential annual reproductive output.  相似文献   

20.
The fiddler crab Uca mjoebergi mates both underground in male-defended burrows and on the surface near female-defended burrows. The reproductive tract of Uca species facilitates last-male precedence, suggesting that males that do not guard-mated females are likely to gain very little paternity if the female re-mates with another male. Here, we test the reproductive success of burrow and surface matings using paternity analysis. We found that 100?% of the females that mated in burrows extruded a clutch of eggs. Furthermore, we show conclusively, for the first time in a fiddler crab species, that last-male sperm precedence results in the majority of the female’s eggs being fertilised by the burrow-mated male. In contrast, surface matings resulted in significantly fewer females extruding eggs (5.6?%). Paternity analysis also revealed that more than half of the clutches from burrow-mated females showed low levels of extra-pair paternity from previous matings. Although multiple matings appear common in U. mjoebergi, burrow-mated males that guard females are guaranteed a successful mating with extremely high rates of assured paternity. Surface matings therefore appear to be an opportunistic tactic that may increase male reproductive success in a highly competitive environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号