首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Infrared spectrometry is a versatile basis to analyse greenhouse gases in the atmosphere. A multicomponent air pollution software (MAPS) was developed for retrieval of gas concentrations from radiation emission as well as absorption measurements. Concentrations of CO, CH4, N2O, and H2O as well as CO2, NO, NO2, NH3, SO2, HCl, HCHO, and the temperature of warm gases are determined on-line. The analyses of greenhouse gases in gaseous emission sources and in ambient air are performed by a mobile remote sensing system using the double-pendulum interferometer K300 of the Munich company Kayser-Threde. Passive radiation measurements are performed to retrieve CO, N2O, and H2O as well as CO2, NO, SO2, and HCl concentrations in smoke stack effluents of thermal power plants and municipal incinerators and CO and H2O as well as CO2 and NO in exhausts of aircraft engines. Open-path radiation measurements are used to determine greenhouse gas concentrations at different ambient air conditions and greenhouse gas emission rates of diffusive sources as garbage deposits, open coal mining, stock farming together with additional compounds (e.g. NH3), and from road traffic together with HCHO. Some results of measurements are shown. A future task is the verification of emission cadastres by these inspection measurements.  相似文献   

3.
4.
Environmental Monitoring and Assessment - No studies have been carried out on the benthic harmful algal blooms (BHABs) along the Strait of Gibraltar in the Mediterranean, and little is known about...  相似文献   

5.
6.
Many trace constituents other than carbon dioxide affect the radiative budget of the atmosphere. The existing international agreement to limit greenhouse gases, the Kyoto Protocol, includes carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6) and credit for some carbon sinks. We investigate technological options for reducing emissions of these gases and the economic implications of including other greenhouse gases and sinks in the climate change control policy. We conduct an integreated assessment of costs using the MIT Emissions Prediction and Policy Analysis (EPPA) model combined with estimates of abatement costs for non-CO2 greenhouse gases and sinks. We find that failure to take advantage of the other gas and sink flexibility would nearly double aggregate Annex B costs. Including all the GHGs and sinks is actually cheaper than if only CO2 had been included in the Protocol and their inclusion achieves greater overall abatement. There remains considerable uncertainty in these estimates, the magnitude of the savings depends heavily on reference projections of emissions, for example, but these uncertainties do not change the overall conclusion that non-CO2 GHGs are an important part of a climate control policy.  相似文献   

7.
A cost-efficient way to allocate carbon dioxide (CO2) emission reductions among countries or regions is to harmonise their marginal reduction costs. This could be achieved by a market of emission reduction units (ERUs). To model such a market, we use a multi-regional MARKAL-MACRO model. It gives insights into the consequences of co-ordinating CO2 abatement on regional energy systems and economies. As a numerical application, we assess the establishment of a market of ERUs among three European countries for curbing their CO2 emissions.  相似文献   

8.
A simple model has been designed to describe the interaction of climate and biosphere. Carbon dioxide, understood as a major emitted gas, leads to a change of global climate. Economic interpretation of the model is based on the maximisation of the global CO2 cumulative emissions. The two most important profiles of emission have been obtained: optimal and multi-exponential suboptimal profiles, each displaying different characteristics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The first greenhouse gas (GHG) emission estimates for Senegal, for the year 1991, were produced according to the draft IPCC/OECD guidelines for national inventories of GHGs. Despite certain discrepancies, nonavailability of data, the quality of some of the data collected, and the methodology, the estimates provide a provisional basis for Senegal to fulfill its obligations under the UN Framework Convention on Climate Change. This inventory reveals that GHG emissions in Senegal, like those in many developing countries, can mainly be attributed to the use of biomass for energy, land-use change and forestry, and savanna burning. Taking into account the direct global warming potential of the main GHGs (CO2, CH4, and N2O), Senegal's emissions are estimated at 17.6 Tg ECO2. The major gases emitted are CO2 (61% of GHG emissions), followed by CH4 (35%) and N2O (4%). Energy accounts for 45% of total emissions (12% from fossil energy and 33% from traditional biomass energy); land-use change and forests, 18%; agriculture, 24%; waste, 12%; and industry, 1%.  相似文献   

10.
In order to arrive at transparent and comparable inventories, the IPCC, in cooperation with the OECD, is currently developing a common methodology and reporting guidelines for the estimation of anthropogenic greenhouse gas emissions. To gain experience with the IPCC methodology, inventories are currently being carried out in various countries. This paper describes the African experience regarding emission inventories and preliminary results of the studies. It focuses on several important sources of non-CO2 greenhouse gas emissions in Africa: biomass burning; rice cultivation; and animals.  相似文献   

11.
This research has developed mathematical models for computing lifetime greenhouse gas (GHG) emissions associated with materials. The models include embodied carbon (EC) emissions from the manufacture of materials, and GHG emissions from incineration, or landfill gas (LFG) production from landfill disposal of the material beyond their service lives. The models are applicable to all materials; however, their applications here are demonstrated for the lumber from a residential building with 50- and 100-year service lives, and with incineration, landfill, and deconstruction as end-of-life treatments. This paper introduces a new metric for lifetime GHG emissions associated with materials termed “Global Warming Impact of Materials (GWIM).” The GWIM is subdivided into two portions: (i) productive portion (GWIMp) that includes the materials’ emissions until the service life of the facility and (ii) non-productive portion (GWIMnp) which includes the materials’ GHG emissions beyond the service life until they are eliminated from the atmosphere. In place of the current, static, EC measurements (kgCO2e or MTCO2e), this model reports the GWIMs in units of kgCO2e-years or MTCO2e-years, which includes the effects of “time of use” of a facility. Using the models, this paper has computed GHG reductions by deconstruction, with material recoveries of 30%, 50%, and 70% at demolition for reuse, recycle, or repurpose. A 70% material recovery, after a 50-year service life of the building, affected a savings of 47% and 52% if the remaining 30% debris was incinerated or landfilled respectively. All of the values computed using models checked out with manual calculations.  相似文献   

12.
13.
Though the principles of the Earth's greenhouse effect have been known for well over a century, it is only recently that advances in climate research have indicated that significant and possibly costly climate change, due to growing emissions of greenhouse gases and their precursors by human activity, is a real possibility. Current estimates of the global human-related emissions of carbon dioxide, methane and nitrous oxide are presented, though many sources remain poorly known or understood. The compilation of national greenhouse inventories as required by the United Nations Framework Convention on Climate Change is likely in the longer term to help improve such global estimates, as long as comparable methodologies are used. The development of the IPCC Guidelines for National Greenhouse Gas Inventories is described, emphasizing the strategies employed to gain wide international participation.  相似文献   

14.
Agriculture is a significant source of anthropogenic greenhouse gas (GHG) emissions, and beef cattle are particularly emissions intensive. GHG emissions are typically expressed as a carbon dioxide equivalent (CO2e) ‘carbon footprint’ per unit output. The 100-year Global Warming Potential (GWP100) is the most commonly used CO2e metric, but others have also been proposed, and there is no universal reason to prefer GWP100 over alternative metrics. The weightings assigned to non-CO2 GHGs can differ significantly depending on the metric used, and relying upon a single metric can obscure important differences in the climate impacts of different GHGs. This loss of detail is especially relevant to beef production systems, as the majority of GHG emissions (as conventionally reported) are in the form of methane (CH4) and nitrous oxide (N2O), rather than CO2. This paper presents a systematic literature review of harmonised cradle to farm-gate beef carbon footprints from bottom-up studies on individual or representative systems, collecting the emissions data for each separate GHG, rather than a single CO2e value. Disaggregated GHG emissions could not be obtained for the majority of studies, highlighting the loss of information resulting from the standard reporting of total GWP100 CO2e alone. Where individual GHG compositions were available, significant variation was found for all gases. A comparison of grass fed and non-grass fed beef production systems was used to illustrate dynamics that are not sufficiently captured through a single CO2e footprint. Few clear trends emerged between the two dietary groups, but there was a non-significant indication that under GWP100 non-grass fed systems generally appear more emissions efficient, but under an alternative metric, the 100-year global temperature potential (GTP100), grass-fed beef had lower footprints. Despite recent focus on agricultural emissions, this review concludes there are insufficient data available to fully address important questions regarding the climate impacts of agricultural production, and calls for researchers to include separate GHG emissions in addition to aggregated CO2e footprints.  相似文献   

15.
深圳地狭人多,特区人口密度高达7310人/平方公里,是中国人口密度最大的城市之一。随着社会经济的高速发展,汽车拥有量的急剧增加,汽车排气污染已成为深圳市最主要的大气污染问题。文章分析了深圳市汽车排气污染的状况及其对城市空气质量的影响,简要介绍了近年来深圳市在控制汽车排气污染方面所做的工作。  相似文献   

16.
The Third Conference of the Parties of the UN-FCCC (CoP-3) held in Kyoto in 1997 defined a Protocol with level of reduction of the Greenhouse Gasses (GHGs) overall emissions for Italy of 6.5% with respect to 1990 emissions. A mathematical model was created in order to evaluate the range of GHGs reduction effects obtained by upgrading waste collection, treatment and disposal system to new Italian regulation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The energy balances of most African countries suggest that biofuels (woodfuel, crop and wood residues, and dung) constitute the largest share of total energy consumption (up to 97% in some sub-Saharan Africa countries). There is, however, an increasing scarcity of woodfuel (fuelwood and charcoal), the major biofuel, and a feared increase in greenhouse gas (GHG) emissions associated with biofuel combustion. The extent of GHG emissions is estimated from biofuel consumption levels that are in turn based on methodologies that might be inaccurate. A questionnaire, supplemented by informal interviews, are used to collect data, yielding information regarding end-uses, technologies used, scale of consumption, determinants of fuel consumption, and interfuel substitution (among other parameters). The survey revealed that cooking is the major end-use, with other common uses, such as space and water heating. Improved stoves that provide better combustion efficiency and, thus, reduce woodfuel consumption have not been widely disseminated and are associated with higher methane emissions than open fires. More than 90% of the households in Africa use open fires. Consumption is presented as per capita for households and as products and quantity of fuel in the small scale industries, commercial, and public sectors. Among the determinants for biofuel consumption are affordability, availability of the fuel, and interfuel substitutions. Flaws in estimating biofuel consumption yield large uncertainties in GHG emissions, with implications for the development of policies on energy planning and environmental protection. However, the application of scenarios can guide policy formulation.  相似文献   

18.
企业自备电厂作为高耗能企业的一员,节能减排是重中之重。本文着重分析了宁夏自备电厂的基本情况,包括电厂类型、资源利用状况及节能减排的艰巨性,并结合当前自备电厂面临的问题对其发展提出了合理的建议。节能减排必须从内部挖掘潜力,不断努力,持之以恒,规范化管理,才能保证宁夏污染物总量减排任务的顺利完成。  相似文献   

19.
Many governments use technology incentives as an important component of their greenhouse gas abatement strategies. These carrots are intended to encourage the initial diffusion of new, greenhouse-gas-emissions-reducing technologies, in contrast to carbon taxes and emissions trading which provide a stick designed to reduce emissions by increasing the price of high-emitting technologies for all users. Technology incentives appear attractive, but their record in practice is mixed and economic theory suggests that in the absence of market failures, they are inefficient compared to taxes and trading. This study uses an agent-based model of technology diffusion and exploratory modeling, a new technique for decision-making under conditions of extreme uncertainty, to examine the conditions under which technology incentives should be a key building block of robust climate change policies. We find that a combined strategy of carbon taxes and technology incentives, as opposed to carbon taxes alone, is the best approach to greenhouse gas emissions reductions if the social benefits of early adoption sufficiently exceed the private benefits. Such social benefits can occur when economic actors have a wide variety of cost/performance preferences for new technologies and either new technologies have increasing returns to scale or potential adopters can reduce their uncertainty about the performance of new technologies by querying the experience of other adopters. We find that if decision-makers hold even modest expectations that such social benefits are significant or that the impacts of climate change will turn out to be serious then technology incentive programs may be a promising hedge against the threat of climate change.  相似文献   

20.
Modifying the form and spatial structure of cities through urban planning can be an effective means to reduce greenhouse gas (GHG) emissions in cities. The supporters of the Compact City Approach to urban sustainability propose dense and centralized urban systems. In the case of population density, they argue that it promotes displacements of foot and public transport, and that typical apartments of compact fabrics require less energy than single-family dwellings. Therefore, high density should lead to low GHG emissions. During the last decade this association has been questioned because: a) there may be compensatory behaviors (more energy consumption and more GHG emissions in mobility and housing during weekends and holidays, and b) the fact of not considering the effects of the endogeneity associated with self-selection. In this paper, we analyze population density as a determinant of mobility and residential GHG emissions in Gran Concepción (Chile) using multivariate regression models. The results obtained indicate that density does not exert a significant impact on GHG emissions in mobility and housing. It is income differences that mostly explain individual GHG emissions variability. This calls into question the possible effectiveness of compactness policies in regional, cultural and climatic contexts different from those of the US and Europe and are excessively oriented towards the maintenance and increase of density in urban centers and slowing down the expansion of suburban neighborhoods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号