首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study considered alternative configurations of passive wells equipped with filter cartridges for removing contaminated groundwater. The wells fully penetrated a simulated unconfined aquifer. Both homogeneous and heterogeneous hydraulic conductivity distributions were considered. An initial configuration comprised wells along the downgradient perimeter of a contaminant plume, spaced 0.5 m in the direction transverse to regional groundwater flow. Additional wells near the downgradient tip of the plume prevented off‐site contamination. Alternative configurations had the same number of wells, but some included wells along higher (interior) concentration contours to facilitate quicker removal of the contaminant plume. Results suggest that downgradient configurations generally outperform alternatives, although repositioning a few outer wells near the contaminant source may be effective in some cases. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Groundwater monitoring at Department of Energy's (DOE's) Hanford Site is a large, expensive undertaking serving multiple purposes, including compliance with regulations and DOE orders, remediation efforts under CERCLA, and sitewide risk evaluations. Like most large Federal facilities, the monitoring program currently in place has evolved and grown overtime as new requirements were established and groups were assigned to address them. DOE and its regulators simultaneously awakened to the fact that there was a need to reevaluate the monitoring activities at Hanford, to better integrate the program, to avoid duplicative sampling, to improve everyone's understanding of the performance of the network, and to evaluate whether adequate data could be collected for lower cost. This paper describes the approch that was developed to guide the rethinking effort with direct and extensive involvement of DOE, EPA, Washington Department of Ecology, Indian Tribes, and DOE Contractors, and how this approach was applied to a large portion of the site. Both the human element of the process (cultural change), as well as some of the technical details associated with the effort, including a flexible application of EPA's data quality objectives process, are discussed.  相似文献   

3.
Direct aerobic biodegradation of vinyl chloride (VC) offers a remedial solution for persistent vinyl chloride plumes that are not amenable to the anaerobic process of reductive dechlorination because of either prevailing geochemical conditions or the absence of active Dehalococcoides ethenogenes. However, tools are needed to evaluate and optimize aerobic VC bioremediation. This article describes the development and testing of two techniques—a microbiological tool and a molecular tool—for this purpose. Both methods are based on detection of bacteria that can use vinyl chloride and ethene as growth substrates in the presence of oxygen. The microbiological tool is an activity assay that indicates whether bacteria capable of degrading ethene under aerobic conditions are present in a groundwater sample. This activity assay gave positive results in the area of active VC degradation of an aerobic VC bioremediation test site. A rapid semiquantitative genetic assay was also developed. This molecular tool, based on polymerase chain reaction (PCR) detection of a gene involved in the metabolism of both ethene and VC, revealed the presence of potential VC degraders in an enrichment culture and site groundwater. These tools could provide a basis for judging the potential of aerobic VC degradation by ethenotrophs at other sites in addition to offering a mechanism for treatment monitoring and system optimization. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
An alternative method of in-situ groundwater sparging, termed density-driven convection (patent pending), is presented. This method has been successfully used to remediate eight underground storage tank releases involving a wide distillation range of petroleum hydrocarbons (gasoline to waste oil) and in a variety of site soils (clay to sandy gravel). Application of the density-driven convection method is detailed in a case study. The system, installed to remediate a gasoline and diesel release from an underground storage tank, was operated and monitored for a period of one year. Monitoring data indicate reductions in total petroleum hydrocarbon concentrations in groundwater and in soil. Concentrations of aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylenes, and naphthalene) also decreased in both media. Stimulation of natural biodegradation, the primary mechanism of removal, occurred rapidly. Natural biological activity gradually declined over the subsequent 150 days. After one year of operation, the sparging system has achieved or is rapidly approaching the regulatory cleanup goals for both soil and groundwater, including reduction of dissolved concentrations below maximum contaminant levels established under the Safe Drinking Water Act.  相似文献   

5.
This study evaluated the effect of heterogeneity in hydraulic conductivity on the tendency for contaminant plumes to attenuate via dilution, hydrodynamic dispersion, and molecular diffusion in simulated aquifers. Simulations included one homogeneous and four increasingly heterogeneous hydraulic conductivity fields. A numerical mass transport model generated an initial contaminant plume for each case; all initial plumes had the same mass. Next, the model simulated plume migrations through the simulated aquifers. Results suggest that highly heterogeneous settings are potentially effective at plume attenuation. Low‐velocity zones in heterogeneous settings delay plume travel, enabling more time for natural processes to lower contaminant concentrations in groundwater. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
DuPont has developed a method to compare, on a consistent economic basis, in situ remediation technologies. The methodology employs a template site with a perchloroethylene plume 1000 ft long by 400 ft wide, and incorporates various aquifer thicknesses and depths. Variables considered in the methodology include duration of the remediation; estimated engineering and flow/transport modeling costs; equipment costs; and operation, maintenance, and monitoring costs. In this article, substrate-enhanced anaerobic bioremediation, intrinsic bioremediation, in situ permeable reactive barriers, and pump-and-treat systems are evalutated. Cost metrics include present cost, cost per pound of contaminant removed, and cost per 1000 gals treated, using a discounted cash-flow analysis. Costs of the remedial alternatives increase starting from intrinsic bioremediation, to substrate-enhanced anaerobic bioremediation, to a biological substrate-enhanced anaerobic barrier, to in situ permeable reactive barriers, to pump-and-treat systems with air stripping and carbon adsorption.  相似文献   

7.
Recent improvements in field‐portable analytical equipment allow accurate on‐site measurement of VOCs present in air at concentrations of less than 0.1 parts per million volume (ppmv). The objective of this project is to determine if the use of these instruments for vapor‐phase measurements of headspace in a monitoring well can serve as a reliable and accurate method for monitoring volatile organic compound (VOC) concentrations in groundwater under equilibrium conditions. As part of a comprehensive research project investigating the utility of this proposed monitoring method, the authors have completed a laboratory validation study to identify instruments and sample‐collection methods that will provide accurate measurement of VOC concentrations in groundwater. This laboratory validation study identified two field‐portable instruments (a gas chromatograph and a photoionization detector) with sufficient sensitivity to measure VOCs in groundwater at concentrations below typical monitoring standards (i.e., 1 to 5 μg/L). The accuracy and precision of these field instruments was sufficient to satisfy typical data‐quality objectives for laboratory‐based analysis. In addition, two sample‐collection methods were identified that yield vapor‐phase samples in equilibrium with water: direct headspace sampling and passive diffusion samplers. These sample‐collection methods allow the field instruments (which measure VOC concentrations in vapor‐phase samples) to be used to measure VOC concentrations in water. After further validation of these sample‐collection methods in the field, this monitoring method will provide a simple way to obtain accurate real‐time measurements of VOC concentrations in groundwater using inexpensive field‐portable analytical instruments. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Directionally drilled horizontal wells offer the opportunity for significant cost savings and technical advantages over alternative trenched well and vertical well soil and groundwater remediation systems in many cases. The magnitude of the cost savings is a function of the remediation technology deployed and the values placed on the reduction of site impacts, dramatic reduction in the time required to achieve site remediation goals and requirements, the ability of horizontal well remediation to easily treat normally recalcitrant contaminants such as MTBE, and the ability to drill under paved areas, operating plants, residential areas, landfills, lagoons, waterways, ponds, basins, and other areas that are normally difficult or impossible to access with conventional drilling or trenching methods. In addition to improvements in site access capabilities, horizontal wells have been found capable of addressing contaminants that vertical wells do not readily treat, even with the same remediation technology deployed, especially if air‐based remediation technologies are deployed. With biosparging, for example, greater treatment capabilities of horizontal wells over vertical wells are attributed to greater oxygen flux over a broader area, a larger treatment zone, and extremely prolonged residence of groundwater contaminants in the aerobic treatment area, typically months or years. This article describes the use of directionally drilled horizontal wells for application of a variety of treatment technologies and includes costs of various options with a detailed comparison of biosparging options. © 2002 Wiley Periodicals, Inc.  相似文献   

9.
In Taiwan, vendors and businesses that sell products belonging to six classes of recyclable materials are required to provide recycling containers at their local retail stores. The integration of these private sector facilities with the recycling depots established by local authorities has the potential to significantly improve residential access to the recycling process. An optimization model is accordingly developed in this work to assist local authorities with the identification of regions that require additional recycling depots for better access and integration with private facilities. Spatial accessibility, population loading and integration efficiency indicators are applied to evaluate whether or not a geographic region is in need of new recycling depots. The program developed here uses a novel algorithm to obtain the optimal solution by a complete enumeration of all cells making up the study area. A case study of a region in Central Taiwan is presented to demonstrate the use of the proposed model and the three indicators. The case study identifies regions without recycling points, prioritizes them based on population density, and considers the option of establishing recycling centers that are able to collect multiple classes of recycling materials. The model is able to generate information suitable for the consideration of decision-makers charged with prioritizing the installation of new recycling facilities.  相似文献   

10.
Kriging is an accepted method of characterizing the groundwater elevation surface at sites where the water level data are available but where there may be insufficient additional data necessary for groundwater flow modeling. Groundwater surface interpolation via kriging is readily performed using commercial, state of the practice software, but some practitioners may not be able to justify such efforts because the process is not validated within studies documented in the peer‐reviewed literature. This paper describes the available kriging software and literature studies and then uses a case study to compare practical groundwater surface modeling to the studies available in the scientific literature. The literature review shows that the state of the practice as represented by the commercial software approach is consistent with the literature. Specifically, cokriging with groundwater elevation as the primary variable with trend removal and ground‐surface elevation as the secondary variable is an appropriate point of departure in practice. The literature review‐based summary of variogram model parameters (model type, nugget, sill, range, and trend model) was not useful as a quality‐control step to assess the reasonableness of variogram parameters identified by the standard practice of software‐assisted iteration when applied to the case‐study data set. The literature review indicated that groundwater elevation kriging has been performed using as few as 10 data points but a comparison of the case‐study simulated groundwater elevations and groundwater gradient magnitudes and directions indicated that the 30‐well threshold more commonly found in the literature was an appropriate minimum at the study site.  相似文献   

11.
On-site oxygen generation was chosen as the most effective and efficient source of pure oxygen for enhancing biodegradation at a hydrocarbon-contaminated oil and gas well site in northern Michigan. Contaminants include benzene, toluene, ethylbenzene, and xylenes released through natural gas dehydration practices that were halted in 1985. Free product and contaminated soil were completely removed from the source area in spring 1989, leaving only the groundwater plume for further remediation. This article discusses the project's two phases—a purge and treat system and the pure-oxygen bioremediation system—each costing $75,000. It also details the combined system's technical elements (including purge and monitoring wells, oxygen generator, and drainfield), and cleanup results (including how pure oxygen has helped destroy contaminants, not merely move them to other media).  相似文献   

12.
There are numerous technologies currently being tested by EPA, universities throughout the world, and private research organizations. A few of the more promising innovative technologies as well as fully tested and proven remedies for treating contaminated groundwater are presented in this article. Although several of those technologies have been in existence for only four to five years, the results of full-scale testing are being produced. The method for each of these promising technologies is described, results from recent field-scale studies are summarized, and a discussion of cost is presented.  相似文献   

13.
At many sites, long‐term monitoring (LTM) programs include metals as chemicals of concern, although they may not be site‐related contaminants and their detected concentrations may be natural. At other sites, active remediation of organic contaminants in groundwater results in changes to local geochemical conditions that affect metal concentrations. Metals should be carefully considered at both types of sites, even if they are not primary contaminants of concern. Geochemical evaluation can be performed at LTM sites to determine if the monitored metals reflect naturally high background and, hence, can be removed from the analytical program. Geochemical evaluation can also be performed pre‐ and post‐treatment at active remediation sites to document the effects of organics remediation on metals and identify the processes controlling metal concentrations. Examples from both types of sites are presented in this article. © 2008 Wiley Periodicals, Inc.  相似文献   

14.
15.
环境水质监测分析过程中水质指标多,监测数据多,数据的审核工作比较复杂。数据审核是水质分析工作质量保证的一个重要环节,是整个质量保证体系中有效的控制手段。主要从理论上分析环境监测中水质指标之间的关系,为水质监测人员监测和数据审核提供参考,从而提高数据质量,为环境水质管理服务。  相似文献   

16.
An Erratum has been published for this article in Remediation 16(1) 2005, 155–157. Water‐level data collection is a fundamental component of groundwater investigations and remediation. While the locations and depths of monitored wells are important, the frequency of data collection may have a large impact on conclusions made about site hydrogeology. Data‐logging water‐level probes may be programmed to record water levels at frequent intervals, providing site decision makers with abundant, detailed information on the response of an aquifer to both anticipated and unforeseen stresses. In this study, a network of movable probes has provided several years of hourly water‐ level data. The understanding of the site's phytoremediation system has been enhanced by the continuous data, but subsequent insights into an unexpected situation regarding the site's infrastructure have been the most valuable result of the monitoring program. © 2005 Wiley Periodicals, Inc.  相似文献   

17.
The rate at which liquids can be added to a vertical well, the lateral zone of impact of the well, and the liquids volume needed to wet the waste within the zone of impact of the well are the key inputs needed to design a vertical well system. This paper presents design charts that can be used to estimate these inputs as a function of municipal solid waste properties (porosity, hydraulic conductivity, and anisotropy ratio), well dimensions (radius and screen length), and injection pressure. SEEP/W modeling was conducted to estimate the key design inputs for a range of conditions practically encountered for a vertical well installed in landfilled waste. The flow rate, lateral zone of impact of a well, liquids volume added, and injection pressure were normalized with the waste properties and well dimensions to formulate dimensionless variables. A series of design charts were created to present dimensionless steady-state flow rate, lateral zone of impact, and the dimensionless liquid volume needed to reach a steady-state condition, as a function of dimensionless input variables. By using dimensionless variables formulated for this work, these charts permit the user to estimate the steady-state design variables described above for a wide range of configurations and conditions beyond those simulated without the need for further modeling. The results of the study suggest that the lateral extent of the well can be estimated using Darcy’s equation and assuming saturated unit-gradient vertical flow regime below the well bottom. An example problem is presented to illustrate the use of the design charts. The scenario described in the example problem was also modeled with SEEP/W, and the results were compared with those obtained from the design charts to demonstrate the validity of design charts for scenarios other than those used for the development of the design charts. The methodology presented in this paper should be thought of as a means to provide a set of bounds that an engineer can use along with their judgment in the design of a system for a specific site.  相似文献   

18.
The Department of Energy (DOE) is conducting a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) mandated Remedial Investigation/Feasibility Study for a site contaminated with Dense Non-Aqueous Phase Liquid (DNAPL) pollutants. Three key efforts were a hydrogeological modeling approach, the generation of feasible sequences of technologies, and the screening of alternative technologies. This research uses a decision analysis process to provide a quantitative assessment of the candidate technologies. Decision analysis modeling was used to gain insight into each sequence of technologies. Sensitivity analysis was also conducted to assess the impact of key assumptions. The results provided the DOE with an objective and traceable rationale for screening and reducing all of the potential technology combinations to 58 technology combinations and a method for identifying the top scoring combinations. The approach has wide applicability to similar CERCLA remediation efforts.  相似文献   

19.
Remediation technologies can sometimes be established, but are not prevalent, for a variety of reasons; however, they can be subject to the forces of change. In some cases, creative economics promotes new uses, but also process improvements can drive new applications and levels of acceptance. This is what is happening with the deployment of horizontal wells for site assessment and remediation. In essence, decreasing costs and a strategic shift, which can be characterized as “greater flexibility,” are two factors that have brought about a resurgence of horizontal well systems. The latter is specifically tied to moving from monolithic single well systems to segmented well systems and this article explains how this is a next‐generation advancement in site assessment and remediation. As one example, nested, discrete horizontal profiling brings additional accuracy to assessment at sites, especially those challenged by access issues and also provides more directed treatment operations with a unique flexibility in dynamic groundwater systems. Also, with horizontal nested well systems, conceptual site models can be significantly enhanced with new perspectives and, depending on the situation, may provide significant economic advantages in deployment. Finally, this technological advancement creates a new paradigm in contrast, or rather as an adjunct, to vertical profiling and high‐resolution site characterization. In fact, it opens up a new strategic approach that can be called high‐resolution contaminant distribution, because flexible horizontal segmented well systems can be used to navigate “up the spine of the plume” providing discretized data sets that illuminate contaminant distribution in new ways.  相似文献   

20.
简要介绍了国内近年来大气SO2连续监测的概况,并以某市1997年及以后的监测结果为例,就季五日法与连续监测法进行了横向对比分析,8城市监测资料回归计算表明,环境质量评价中一定要注意监测方式改变而产生的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号