首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over decades of economic development, China's industrialization has led to significant environmental issues due to unregulated discharges into air, water, and soil. As cities continue to expand (i.e., urbanization trend) and awareness/concerns about environmental pollution rises, many industrial facilities along the edge of or within the city boundaries have been relocated or closed. This urbanization trend leaves behind idled and abandoned land that is contaminated from the former industrial activities and unregulated discharges. China released its first nationwide soil quality survey in April 2014, and the survey suggests that soil conditions in China represent a significant challenge. China has encouraged local engineering firms to demonstrate soil treatment technologies through pilot‐scale studies, but the outcomes of many demonstrations have not been promising due to the lack of remediation experience and underdeveloped technical guidelines that are needed to guide the remediation processes. During the past decade, some local soil remediation experience has been established, but it is limited for certain technologies that address their primary contaminants of concern: heavy metals and persistent organic pollutants. In 2014, national technical guidelines were published regarding environmental investigation, risk assessment, monitoring, and remediation; however, regulations and funding systems are still underdeveloped. Thus, the remediation processes that should maximize economic and environmental benefits are not streamlined. This article provides an overview of the latest regulatory developments, remediation technologies applied, technology trends, and market opportunities in China. The provided information aims to allow international remediation practitioners to better understand and appreciate this unique and emerging remediation market, which is growing fast, and to highlight the importance of developing a sustainable model that not only provides for cleanup of the environment but also supports economic development. ©2015 Wiley Periodicals, Inc.  相似文献   

2.
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous‐phase liquids (NAPLs) can present significant technical and financial (long‐term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off‐gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off‐gas treatment technology selection in this article allows for more in‐depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic‐compression and condensation combined with regenerative adsorption (C3–Technology). Of particular challenge to the off‐gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off‐gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off‐gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off‐gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off‐gas treatment technologies and a region‐specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3–Technology. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
1,4‐Dioxane remediation is challenging due to its physiochemical properties and low target treatment levels. As such, applications of traditional remediation technologies have proven ineffective. There are a number of promising remediation technologies that could potentially be scaled for successful application to groundwater restoration. Sustainable remediation is an important consideration in the evaluation of remediation technologies. It is critically important to consider sustainability when new technologies are being applied or new contaminants are being treated with traditional technologies. There are a number of social, economic, and environmental drivers that should be considered when implementing 1,4‐dioxane treatment technologies. This includes evaluating sustainability externalities by considering the cradle‐to‐grave impacts of the chemicals, energy, processes, transportation, and materials used in groundwater treatment. It is not possible to rate technologies as more or less sustainable because each application is context specific. However, by including sustainability thinking into technology evaluations and implementation plans, decisions makers can be more informed and the results of remediation are likely to be more effective and beneficial. There are a number sustainable remediation frameworks, guidance documents, footprint assessment tools, life cycle assessment tools, and best management practices that can be utilized for these purposes. This paper includes an overview describing the importance of sustainability in technology selection, identifies sustainability impacts related to technologies that can be used to treat 1,4‐dioxane, provides an approximating approach to assess sustainability impacts, and summarizes potential sustainability impacts related to promising treatment technologies. ©2016 Wiley Periodicals, Inc.  相似文献   

4.
In many locations across the world, land contamination poses a serious threat to human health and the wider environment. For instance, a report published on April 17, 2014, revealed that China now has 16.1 percent of its land contaminated by various organic and inorganic contaminants, posing a range of challenges from human health risk to food security. The innovation and adoption of suitable remediation technologies is critical for solving land contamination issues. However, little is known about the pattern of remediation technology adoption, as well as its determining factors. This study uses a questionnaire survey in the United States, United Kingdom, and China to examine the spatial variation of remediation technology adoption. It further explores the temporal trend of remediation technology adoption using secondary data from the U.S. Superfund program. The study identified significant differences in remediation technology adoption among these countries, which are attributed to the different environmental, social, economic, and regulatory contexts. It is argued that the full implications of remediation technology adoption to sustainable development should be further studied, and policy instruments should be designed accordingly to promote those remediation technologies that align the best with long‐term sustainability. Technology developers may also use these implications to adjust their research and development priorities. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
渗透性反应墙(PRBs)是倍受关注的地下水原位修复技术之一,具有高效廉价、安装简便、维护简单等优点。详细总结了零价铁、活性炭、无机矿物材料和生物质材料等PRBs反应介质的结构、性能、适用范围、改良方法及增强吸附机制,介绍了PRBs技术在国内外地下水原位修复领域的工程应用实例,指出研发可再生型反应介质、深入研究复杂体系的污染物去除主导机制以及开展多介质混合、多种原位修复技术集成应用研究将是今后PRBs的主要研究方向。  相似文献   

6.
The Hazardous Substance Research Center (HSRC) was established by the U.S. Environmental Protection Agency (EPA) to assist in the implementation of Superfund and to address major hazardous substance environmental problems at a regional level. Over the past 12 years, the HSRC program has produced more than 1,200 peer‐reviewed technical articles, 27 patents and licenses, 21 new technologies for the remediation marketplace, and provided technical assistance to more than 300 communities. Research, technology transfer, and training are conducted by five regional multi‐university centers, which focus on different aspects of hazardous substance management. Areas of focus include urban environments, contaminated sediments, natural remediation and restoration technologies, abandoned mine lands, and chlorinated solvents in groundwater. This article provides an overview of the five HSRC programs including current areas of research, field studies, and technology transfer Internet links to access research results and remediation technology information. © 2003 Wiley Periodicals, Inc.  相似文献   

7.
Hazardous waste remediation technologies are rapidly evolving, and it is a challenge for environmental consultants and those working in the government and public sectors to remain current with those technologies. Fortunately, the U.S. Environmental Protection Agency (EPA), through a variety of programs and initiatives, has been a leader in providing information on hazardous waste remediation technologies. This article provides an overview of EPA remediation programs and guides the reader through valuable EPA information sources including publications, databases, and on-line services.  相似文献   

8.
石油污染土壤的微生物修复技术   总被引:1,自引:0,他引:1       下载免费PDF全文
李杨  李凡修 《化工环保》2017,37(6):605-610
介绍了石油污染土壤微生物修复技术的影响因素;概述了生物刺激、生物强化、固定化微生物、植物-微生物联合修复以及电动-微生物联合修复石油污染土壤的技术原理,分析了现阶段土壤修复过程中面临的难题,预测了微生物修复技术的研究方向。指出优化微生物的环境条件、培育新型高效的基因工程菌和开发经济高效的新型修复技术等将是未来微生物修复技术的发展趋势。  相似文献   

9.
钱翌  孔祥文 《化工环保》2015,35(2):147-153
综述了物理修复、化学修复、微生物修复及联合修复等几种主要的1,2,4-三氯苯(1,2,4-TCB)环境污染修复技术的研究进展。阐述了各种修复方法的反应原理、修复条件和效果,对比了各种修复方法的优缺点。提出今后的研究方向:解决物理吸附法修复1,2,4-TCB污染后的吸附剂的后续处理问题;优化化学降解1,2,4-TCB的工艺条件,避免二次污染,进行现场试验,实现工程应用;分离、培育1,2,4-TCB的优势降解菌种;深入研究联合修复技术的降解机理,实现1,2,4-TCB的高效、彻底降解。  相似文献   

10.
The purpose of this article is to present a framework for evaluating the cost-effectiveness of innovative technologies for environmental characterization, remediation, monitoring, and waste management. The authors describe the steps involved in actually using the methodology to perform a cost-effectiveness analysis. They provide basic techniques for designing a fair comparison, developing scenarios, choosing a baseline technology, assessing relative performance, evaluating life-cycle costs, and calculating cost savings. Examples are used to illustrate these concepts and a case study is presented involving a new remediation technology called in-situ air stripping.  相似文献   

11.
Contamination of soil and sediment by pollutants represents a major environmental challenge. Remediation of soil during the original Superfund years consisted primarily of dig and haul, capping, or containment. The 1986 amendments to CERCLA—SARA—provided the incentive for treatment and permanent remedies during site remediation. Thermal treatment, which routinely achieves the low cleanup criteria required by RCRA land-ban regulations, became one of the major technologies used for cleanup under the concept of ARAR. As the remediation industry matured and recognized specific market niches in soil remediation, a number of new technologies emerged. Thermal desorption, bioremediation, soil vapor extraction, soil washing, and soil extraction are being used on sites at which the technology offers advantages over incineration. In addition, a continuing stream of emerging technologies is being presented that requires careful evaluation relative to existing cleanup methods. Each of these technologies offers a range of options for achieving appropriate cleanup criteria, application to different soil matrices, cost, time of remediation, and public acceptability. Balancing cleanup criteria defined by regulation or risk assessment with technology cost and capability affords the opportunity to solve these problems with appropriate balance of cost and protection of human health and the environment.  相似文献   

12.
Success of future environmental remediation projects depends on applying knowledge gained from completed projects. This article examines the trends in technology implementation, quantifies the impact of different remediation technologies on project costs and execution risks, and quantifies the economies of scale experienced by remediation projects. Actual project data from remediation projects conducted by the private sector and government organizations form the basis of the analysis.  相似文献   

13.
DuPont has developed a method to compare, on a consistent economic basis, in situ remediation technologies. The methodology employs a template site with a perchloroethylene plume 1000 ft long by 400 ft wide, and incorporates various aquifer thicknesses and depths. Variables considered in the methodology include duration of the remediation; estimated engineering and flow/transport modeling costs; equipment costs; and operation, maintenance, and monitoring costs. In this article, substrate-enhanced anaerobic bioremediation, intrinsic bioremediation, in situ permeable reactive barriers, and pump-and-treat systems are evalutated. Cost metrics include present cost, cost per pound of contaminant removed, and cost per 1000 gals treated, using a discounted cash-flow analysis. Costs of the remedial alternatives increase starting from intrinsic bioremediation, to substrate-enhanced anaerobic bioremediation, to a biological substrate-enhanced anaerobic barrier, to in situ permeable reactive barriers, to pump-and-treat systems with air stripping and carbon adsorption.  相似文献   

14.
Greenhouse gas emissions assessments for site cleanups typically quantify emissions associated with remediation and not those from contaminant biodegradation. Yet, at petroleum spill sites, these emissions can be significant, and some remedial actions can decrease this additional component of the environmental footprint. This article demonstrates an emissions assessment for a hypothetical site, using the following technologies as examples: excavation with disposal to a landfill, light nonaqueous‐phase liquid (LNAPL) recovery with and without recovered product recycling, passive bioventing, and monitored natural attenuation (MNA). While the emissions associated with remediation for LNAPL recovery are greater than the other considered alternatives, this technology is comparable to excavation when a credit associated with product recycling is counted. Passive bioventing, a green remedial alternative, has greater remedial emissions than MNA, but unlike MNA can decrease contaminant‐related emissions by converting subsurface methane to carbon dioxide. For the presented example, passive bioventing has the lowest total emissions of all technologies considered. This illustrates the value in estimating both remediation and contaminant respiration emissions for petroleum spill sites, so that the benefit of green remedial approaches can be quantified at the remedial alternatives selection stage rather than simply as best management practices. ©2015 Wiley Periodicals, Inc.  相似文献   

15.
In 1976, the discovery of the Love Canal Superfund Site in New York thrust environmental cleanups into the forefront of the national conscience and essentially launched the remediation industry. Since then, vast efforts have been devoted to improving site remediation. Despite the attention given to key subject areas, such as site characterization, risk assessment, and remediation technologies, relatively little attention has been given to the objectives set forth for conducting cleanups, and they have generally not been rigorously evaluated in the literature. Several of the more common objectives for remediation projects are discussed. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Relatively little data are available to document the historical cost for using common remediation technologies, and site managers often must rely on information from technology vendors and predictive models, which may not accurately reflect the experiences of previous technology users. To help address these concerns, the U.S. Environmental Protection Agency (EPA) conducted an evaluation of data on historical costs of common remediation technologies. Cost curves were developed for four technologies, showing the relationship between cost for remediation and quantity of material treated. Although costs are known to be highly site‐specific and affected by many factors, the curves are useful in illustrating the variability of historical costs and the economies of scale for treating relatively large quantities of material. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
Decisions that determine the proper risk-based remediation approach are based on technical, regulatory, cost, legal, and political factors. A wide variety of options such as the ASTM RBCA tiered approach, the API Decision Support Software, and a host of agency-specific methods and commercial risk assessment software are all available. The optimization of a remediation project requires the right remediation technology coupled with the appropriate analytical framework. For groundwater remediation, the application of various “risk reduction” technologies can be classified as aggressive (pump and treat), moderate intensity (air sparging), low intensity (oxygen release compound-ORC®), and intrinsic (monitor only). The time frame of risk analysis will establish the proper risk reduction strategy. The selection process is inherently iterative, and the approach by which an optimal solution can be derived forms the basis of this article. A case study of a Texas site put these issues into context.  相似文献   

18.
有机污染土壤原位化学氧化药剂投加方式的综述   总被引:1,自引:0,他引:1       下载免费PDF全文
原位化学氧化技术是修复有机污染土壤最经济有效的技术之一。药剂的投加与分散技术是原位化学氧化修复技术的核心。药剂投加与分散方式的选择与污染场地的土壤渗透性、特征水平、污染深度、氧化剂性质、修复费用等相关。阐述了直压式注射法、注射井法、土壤置换法和高压-旋喷注射法等药剂投加与分散技术的适用性、控制参数及优缺点等,引用工程实例对药剂投加与分散技术在原位化学氧化修复过程中的应用情况进行了论证。  相似文献   

19.
Since the early 1970s, technologies for remediating organic contamination in soils and groundwater have evolved through three stages with primary emphasis on (1) gross removal processes, (2) active in situ treatment, and (3) risk-based closure and natural attentuation. Technologies for treating metals contamination are evolving through similar stages. In the late 1990s, metals remediation has arrived at the second stage in which a wide range of in situ technologies are available either to extract metals directly from the subsurface or to render them immobile and harmless. In situ geochemical fixation is an example of a commercial technology capable of addressing a wide range of metals contamination sites. Four case histories demonstrate the versatility of this approach. Other promising technologies for treating metals contamination are also emerging. These include geokinetics, biocatalytic precipitation processes, phytoremediation, and artificial wetlands. As our knowledge continues to grow, the most elegant solutions to metals contamination will rely more and more heavily on the soil's natural capacity to stabilize and immobilize metals over time.  相似文献   

20.
Nanoscale zero‐valent iron (nZVI) is the most commonly used nanoremediation material. While there has been a reasonable level of application of nZVI technologies for in situ remediation in the United States, its utilization across Europe has been much more limited. There has been significant uncertainty about the balance between deployment risks and benefits for nanoparticles (NPs), which has affected the regulatory position in several countries. Some member states of the European Union (EU) take a strong precautionary view of the risks from the deployment of NPs into the subsurface, preventing the adoption of the technology. This article provides a risk–benefit assessment for nZVI based on published information and describes the steps that will be taken by a major European research project (NanoRem), as part of its work to provide a basis for better informed decision making in European environmental restoration markets. A key part of this process is dialogue between practitioners and researchers. NanoRem therefore has an active process of communication with different stakeholder networks (regulators, service providers, and site owners). NanoRem hopes to stimulate a consensus on appropriate use of nanoremediation and thereby stimulate effective technology transfer to the European remediation market. ©2015 The Authors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号